Skip to main content
Log in

In Vitro Apoptosis Induction in a Human Prostate Cancer Cell Line by Thermotolerant Glycolipid from Bacillus licheniformis SV1

  • Original Article
  • Published:
Journal of Surfactants and Detergents

Abstract

A highly potent glycolipid was isolated from a crude oil-contaminated soil bacterium Bacillus licheniformis SV1 (NCBI GenBank Acc. No. KX130852) when grown on a modified mineral salt medium supplemented with 2% oleic acid. The maximum reduction in surface tension of cell-free broth from 71 ± 0.812 to 25.919 ± 0.984 mN/m with 89 ± 0.346% emulsification activity was recorded after 120 h of growth. Glycolipid was purified using chromatographic techniques and the presence of aliphatic chain (C–H stretch) and OH-band was revealed by NMR, GC–MS and FTIR analysis. Stability of glycolipid up to 250 °C and its complete decomposition at 507 °C was recorded by thermogravimetric analysis (TGA). MTT assay (IC50 = 0.473 ± 0.048 mg/ml) along with 4′,6-diamidino-2-phenylindole (DAPI) and acridine orange and ethidium bromide (AO/EtBr) staining validated that glycolipid induces cell apoptosis in human prostate cancer cell line (PC-3). Furthermore, potent anti-cancerous compounds such as 9-octadecanoic acid (22.55%), linoleic acid methyl ester (2.2%) and palmitic acid (1.18%) were also detected in the GC–MS spectra of the purified glycolipid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

MSM:

Mineral salt medium

AO/EtBr:

Acridine orange and ethidium bromide

DAPI:

4′,6-Diamidino-2-phenylindole

References

  1. Antoniou E, Fodelianakis S, Korkakaki E, Kalogerakis N. Biosurfactant production from marine hydrocarbon-degrading consortia and pure bacterial strains using crude oil as carbon source. Front Microbiol. 2015;6:1–14.

    Article  Google Scholar 

  2. Gudiña EJ, Pereira JFB, Costa R, Coutinho JAP, Teixeira JA, Rodrigues LR. Biosurfactant-producing and oil-degrading Bacillus subtilis strains enhance oil recovery in laboratory sand-pack columns. J Hazard Mater. 2013;261:106–13.

    Article  Google Scholar 

  3. Batista SB, Mounteer AH, Amorim FR, Totola MR. Isolation and characterization of biosurfactant/bioemulsifier-producing bacteria from petroleum contaminated sites. Bioresour Technol. 2006;97:868–75.

    Article  CAS  Google Scholar 

  4. Uzoigwe C, Burgess JG, Ennis CJ, Rahman PKSM. Bioemulsifiers are not biosurfactants and require different screening approaches. Front Microbiol. 2015;6:1–6.

    Article  Google Scholar 

  5. Banat IM, Satpute SK, Cameotra SS, Patil R, Nyayanit NV. Cost effective technologies and renewable substrates for biosurfactants production. Front Microbiol. 2014;5:1–18.

    Article  Google Scholar 

  6. Rahman KSM, Rahman TJ, Kourkoutas Y, Petsas I, Marchant R, Banat IM. Enhanced bioremediation of n-alkane in petroleum sludge using bacterial consortium amended with rhamnolipid and micronutrients. Bioresour Technol. 2003;90:159–68.

    Article  CAS  Google Scholar 

  7. Christova N, Tuleva B, Kril A, Georgieva M, Konstantinov S, Terziyski I, Nikolova B, Stoineva I. Chemical structure and in vitro antitumor activity of rhamnolipids from Pseudomonas aeruginosa BN10. Appl Biochem Biotechnol. 2013;170:676–89.

    Article  CAS  Google Scholar 

  8. Jiang L, Shen C, Long X, Zhang G, Meng Q. Rhamnolipids 354 elicit the same cytotoxic sensitivity between cancer cell and normal cell by reducing surface tension of culture medium. Appl Microbiol Biotechnol. 2014;98:10187–96.

    Article  CAS  Google Scholar 

  9. Gudiña EJ, Teixeira JA, Rodrigues LR. Biosurfactants produced by marine microorganisms with therapeutic applications. Mar Drugs. 2016;14(2):1–15.

    Article  Google Scholar 

  10. Jemal A, Siegel R, Ward E, Xu J. Cancer statistics. CA Cancer J Clin. 2010;60:277–300.

    Article  Google Scholar 

  11. Pemmaraju SC, Sharma D, Singh N, Panwar R, Cameotra SS, Pruthi V. Production of microbial surfactants from oily sludge contaminated soil by Bacillus subtilis DSVP23. Appl Biochem Biotechnol. 2012;167:1119–31.

    Article  CAS  Google Scholar 

  12. Keskin NOS, Han D, Ozkan AD, Angun P, Umu OCO, Tekinay T. Production and structural characterization of biosurfactant produced by newly isolated Staphylococcus xylosus STF1 from petroleum contaminated soil. J Petrol Sci Eng. 2015;133:689–94.

    Article  Google Scholar 

  13. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol. 2013;30:2725–9.

    Article  CAS  Google Scholar 

  14. Mukherjee S, Das P, Sivapathasekaran C, Sen R. Enhanced production of biosurfactant by a marine bacterium on statistical screening of nutritional parameters. Bio Eng J. 2008;42:254–60.

    Article  CAS  Google Scholar 

  15. Sim L, Ward OP, Li Z-Y. Production and characterization of a biosurfactant isolated from Pseudomonas aeruginosa UW-1. J Ind Microbiol Biotechnol. 1997;19:232–8.

    Article  CAS  Google Scholar 

  16. Heyd M, Kohnert A, Tan TH, Nusser M, Kirschhöfer F, Brenner-Weiss G, Franzreb M, Berensmeier S. Development and trends of biosurfactant analysis and purification using rhamnolipids as an example. Anal Bioanal Chem. 2008;391:1579–90.

    Article  CAS  Google Scholar 

  17. Abbasi H, Hamedi MM, Lotfabad TB, Zahiri HS, Sharafi H, Masoomi F, Moosavi- Movahedi AA, Ortiz A, Amanlou M, Noghabi KA. Biosurfactant-producing bacterium, Pseudomonas aeruginosa MA01 isolated from spoiled apples: physicochemical and structural characteristics of isolated biosurfactant. J Biosci Bioeng. 2012;113:211–9.

    Article  CAS  Google Scholar 

  18. Lan G, Fan Q, Liu Y, Chen C, Li G, Liu Y, Yin X. Rhamnolipid production from waste cooking oil using Pseudomonas SWP-4. Biochem Eng J. 2015;101:44–54.

    Article  CAS  Google Scholar 

  19. Tai M, Stephanopoulos G. Engineering the push and pull of lipid biosynthesis in oleaginous yeast Yarrowia lipolytica for biofuel 382 production. Metab Eng. 2013;15:1–9.

    Article  CAS  Google Scholar 

  20. Claus H. Rapid identification of fatty acid methyl esters using a multidimensional gas chromatography mass spectroscopy database. J Chromatogr A. 2008;1177(1):159–69.

    Article  Google Scholar 

  21. Jain R, Mody K, Mishra A. Production and structural characterization of biosurfactant produced by an alkaliphilic bacterium Klebsiella sp.: Evaluation of different carbon sources. Colloids Surf B. 2013;108:199–204.

    Article  CAS  Google Scholar 

  22. Kumar N, Sharan S, Singh AK, Chakraborty A, Roy P. Anticancer activities of pterostilbene isothiocyanate conjugate in breast cancer cells: involvement of PPARc. PLoS ONE. 2014;9:1–17.

    Google Scholar 

  23. Ribble D, Goldstein NB, Norris DA, Shellman YG. A simple technique for quantifying apoptosis in 96-well plates. BMC Biotechnol. 2005;5:1–7.

    Article  Google Scholar 

  24. Dadrasnia A, Usman MM, Wei KSC, Velappan RD, Jamali H, Mohebali N, Ismail S. Native soil bacterial isolate in Malaysia exhibit promising supplements on degrading organic pollutants. Process Saf Environ. 2016;100:264–71.

    Article  CAS  Google Scholar 

  25. Liu B, Liu J, Ju M, Li X, Yu Q. Purification and characterization of biosurfactant produced by Bacillus licheniformis Y-1 and its application in remediation of petroleum contaminated soil. Marine Poll Bull. 2016;107(1):1–6.

    Article  Google Scholar 

  26. Wei YH, Chou CL, Chang JS. Rhamnolipid production by indigenous Pseudomonas aeruginosa J4 originating from petrochemical wastewater. Biochem Eng J. 2005;27:146–54.

    Article  CAS  Google Scholar 

  27. Aparna A, Srinikethan G, Smitha H. Production and characterization of biosurfactant produced by a novel Pseudomonas sp. Colloids Surf B. 2012;95:23–9.

    Article  CAS  Google Scholar 

  28. Yoo Y, Shin B, Hong J, Lee J, Chee H, Song K, Lee K. Isolation of fatty acids with anticancer activity from Protaetia brevitarsis larva. Arch Pharm Res. 2007;30:361–5.

    Article  CAS  Google Scholar 

  29. Lee KW, Lee HJ, Cho HY, Kim YJ. Role of the conjugated linoleic acid in the prevention of cancer. Crit Rev Food Sci. 2007;45:135–44.

    Article  Google Scholar 

  30. Janak T, Radwanska A, Lukaszwicz M. Lipopeptide biosurfactant pseudofactin II induced apoptosis of melanoma A 375 cells by specific interaction with the plasma membrane. PLoS ONE. 2013;8:1–9.

    Google Scholar 

  31. Janek T, Łukaszewicz M, Rezanka T, Krasowska A. Isolation and characterization of two new lipopeptide biosurfactants produced by Pseudomonas fluorescens BD5 isolated from water from the Arctic Archipelago of Svalbard. Bioresour Technol. 2010;101(15):6118–23.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors are highly grateful to the Department of Science and Technology, INSPIRE (DST, INSPIRE) Govt. of India (Grant No. IF130678) for providing financial assistance to carry out the present work. Authors are also thankful to Institute Instrumentation Centre (IIC), IIT Roorkee and Department of Chemical Engineering, IIT Roorkee for providing the instrumentation facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vikas Pruthi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1720 kb)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gupta, S., Varshney, R., Jha, R. et al. In Vitro Apoptosis Induction in a Human Prostate Cancer Cell Line by Thermotolerant Glycolipid from Bacillus licheniformis SV1. J Surfact Deterg 20, 1141–1151 (2017). https://doi.org/10.1007/s11743-017-1986-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11743-017-1986-0

Keywords

Navigation