Skip to main content
Log in

Bacterial Communities in Bacteriomes, Ovaries and Testes of three Geographical Populations of a Sap-Feeding Insect, Platypleura kaempferi (Hemiptera: Cicadidae)

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Mutualistic associations between symbiotic bacteria and their insect hosts are widespread. The bacterial diversity and community composition within hosts may play an important role in shaping insect biology, ecology, and evolution. Here, we focused on the bacterial communities in bacteriomes, ovaries and testes of three representative populations of the cicada Platypleura kaempferi (Fabricius) using high-throughput 16S rRNA amplicon sequencing approach combined with light microscopy and confocal imaging approach. The obligate symbiont Sulcia was detected in all the examined samples, which showed a relatively high abundance in most bacteriomes and ovaries. The unclassified OTUs formerly identified as an unclassified Rhizobiales bacterium was demonstrated to be the co-obligate symbiont Hodgkinia, which showed 100% infection rate in all the examined samples and had an especially high abundance in most bacteriomes and ovaries. Hodgkinia and Sulcia occupy the central and peripheral bacteriocytes of each bacteriome unit, respectively. Cluster analysis revealed that the bacterial communities in bacteriomes, ovaries and testes of Zhouzhi and Ningshan populations separated strongly from each other. Significant difference was also detected between the Yangling and Ningshan populations, but no significant difference was detected between the Yangling and Zhouzhi populations. This may be related to the difference of host plants and genetic differentiation of these populations. Our findings show that the bacterial communities can be influenced by the population differentiation of the host cicadas and/or the host plants of cicadas, which improve our understanding of the associations between the bacterial community and population differentiation of sap-feeding insects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

All sequences have been submitted to GenBank (Accession Nos.: MT672251–MT672255, MT762257–MT672264, MW590200 and MW629023–MW629053). The raw reads of 16S rRNA amplicon sequencing were deposited in the NCBI Sequence Read Archive (SRA) database under BioProject accession number PRJNA640760.

References

  1. Williams KS, Simon C (1995) The ecology, behavior, and evolution of periodical cicadas. Annu Rev Entomol 40:269–295

    Article  CAS  Google Scholar 

  2. Lloyd M, White JA (1987) Xylem feeding by periodical cicada nymphs on pine and grass roots, with novel suggestions for pest-control in conifer plantations and orchards. Ohio J Sci 87:50–54

    Google Scholar 

  3. Mehdipour M, Zamanian H, Farazmand H, Hosseini-Gharalari A (2016) Disruption of reproductive behavior of grapevine cicada, Cicadatra alhageos, by acoustic signals playback. Entomol Exp App 158:210–216

    Article  Google Scholar 

  4. Douglas AE (2006) Phloem sap feeding by animals: problems and solutions. J Exp Bot 57:747–754

    Article  CAS  PubMed  Google Scholar 

  5. Baumann P (2015) Biology of bacteriocyte-associated endosymbionts of plant sap-sucking insects. Annu Rev Microbiol 59:155–189

    Article  Google Scholar 

  6. Moran NA, Tran P, Gerardo NM (2005) Symbiosis and insect diversification: an ancient symbiont of sap-feeding insects from the bacterial phylum Bacteroidetes. Appl Environ Microbiol 71:8802–8810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. McCutcheon JP, McDonald BR, Moran NA (2009) Convergent evolution of metabolic roles in bacterial co-symbionts of insects. Proc Natl Acad Sci USA 106:15394–15399

    Article  CAS  PubMed  Google Scholar 

  8. McCutcheon JP, Moran NA (2010) Functional convergence in reduced genomes of bacterial symbionts spanning 200 My of evolution. Genome Biol Evol 2:708–718

    Article  PubMed  PubMed Central  Google Scholar 

  9. Van Leuven JT, Meister RC, Simon C, McCutcheon JP (2014) Sympatric speciation in a bacterial endosymbiont results in two genomes with the functionality of one. Cell 158:1270–1280

    Article  PubMed  Google Scholar 

  10. Campbell MA, Van Leuven JT, Meister RC, Carey KM, Simon C, McCutcheon JP (2015) Genome expansion via lineage splitting and genome reduction in the cicada endosymbiont Hodgkinia. Proc Natl Acad Sci USA 112:10192–10199

    Article  CAS  PubMed  Google Scholar 

  11. Campbell MA, Łukasik P, Simon C, McCutcheon JP (2017) Idiosyncratic genome degradation in a bacterial endosymbiont of periodical cicadas. Curr Biol 27:3568–3575

    Article  CAS  PubMed  Google Scholar 

  12. Matsuura Y, Moriyama M, Łukasik P, Vanderpool D, Tanahashi M, Meng XY, McCutcheon JP, Fukatsu T (2018) Recurrent symbiont recruitment from fungal parasites in cicadas. Proc Natl Acad Sci USA 115:E5970–E5979

    Article  CAS  PubMed  Google Scholar 

  13. Wang D, Huang Z, He H, Wei C (2018) Comparative analysis of microbial communities associated with bacteriomes, reproductive organs and eggs of the cicada Subpsaltria yangi. Arch Microbiol 200:227–235

    Article  CAS  PubMed  Google Scholar 

  14. Huang Z, Wang D, Li J, Wei C, He H (2020) Transovarial transmission of bacteriome-associated symbionts in cicada Pycna repanda (Hemiptera: Cicadidae). Appl Environ Microbiol 86:e02957-e3019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hansen AK, Jeong G, Paine TD, Stouthamer R (2007) Frequency of secondary symbiont infection in an invasive psyllid relates to parasitism pressure on a geographic scale in California. Appl Environ Microbiol 73:7531–7535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Smith CC, Snowberg LK, Gregory Caporaso J, Knight R, Bolnick DI (2015) Dietary input of microbes and host genetic variation shape among-population differences in stickleback gut microbiota. ISME J 9:2515–2526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Lukasik P, van Asch M, Guo H, Ferrari J, Godfray HC (2012) Unrelated facultative endosymbionts protect aphids against a fungal pathogen. Ecol Lett 16:214–218

    Article  PubMed  Google Scholar 

  18. Martino ME, Joncour P, Leenay R, Gervais H, Shah M, Hughes S, Gillet B, Beisel C, Leulier F (2018) Bacterial adaptation to the host’s diet is a key evolutionary force shaping, Drosophila-Lactobacillus, symbiosis. Cell Host Microbe 24:109–119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Blekhman R, Goodrich JK, Huang K, Sun Q, Bukowski R, Bell JT, Spector TD, Keinan A, Ley RE, Gevers D, Clark AG (2015) Host genetic variation impacts microbiome composition across human body sites. Genome Biol 16:191

    Article  PubMed  PubMed Central  Google Scholar 

  20. Aksoy E, Telleria EL, Echodu R, Wu Y, Okedi LM, Weiss BL, Aksoy S, Caccone A (2014) Analysis of multiple tsetse fly populations in Uganda reveals limited diversity and species-specific gut microbiota. Appl Environ Microbiol 80:4301–4312

    Article  PubMed  PubMed Central  Google Scholar 

  21. Ferrari J, West JA, Via S, Godfray HC (2012) Population genetic structure and secondary symbionts in host-associated populations of the pea aphid complex. Evol Int J Org Evol 66:375–390

    Article  Google Scholar 

  22. Jing X, Wong CN, Chaston JM, Colvin J, Mckenzie CL, Douglas AE (2014) The bacterial communities in plant phloem-sap-feeding insects. Mol Ecol 23:1433–1444

    Article  CAS  PubMed  Google Scholar 

  23. Guidolin AS, Cônsoli FL (2016) Symbiont diversity of Aphis (Toxoptera) citricidus (Hemiptera: Aphididae) as influenced by host plants. Microb Ecol 73:201–210

    Article  PubMed  Google Scholar 

  24. Wang D, Wei C (2020) Bacterial communities in digestive and excretory organs of cicadas. Arch Microbiol 202:539–553

    Article  CAS  PubMed  Google Scholar 

  25. Folmer O, Black M, Hoeh W, Lutz R, Vrijenhoek R (1994) DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol Mar Biol Biotechnol 3:294–297

    CAS  PubMed  Google Scholar 

  26. McCutcheon JP, McDonald BR, Moran NA (2009) Origin of an alternative genetic code in the extremely small and GC-rich genome of a bacterial symbiont. PLoS Genet 5:e1000565

    Article  PubMed  PubMed Central  Google Scholar 

  27. Mizrahi-Man O, Davenport ER, Gilad Y (2013) Taxonomic classification of bacterial 16S rRNA genes using short sequencing reads: evaluation of effective study designs. PLoS One 8:e53608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Gu Z, Gu L, Eils R, Schlesner M, Brors B (2014) Circlize implements and enhances circular visualization in R. Bioinformatics 30:2811–2812

    Article  CAS  PubMed  Google Scholar 

  29. Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski RA, Oakley BB, Parks DH, Robinson CJ, Sahl JW, Stres B, Thallinger GG, Van Horn DJ, Weber CF (2009) Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75:7537–7541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Clarke KR (1993) Non-parametric multivariate analysis of changes in community structure. Austral Ecol 18:117–143

    Article  Google Scholar 

  31. Zheng Z, Wang D, He H, Wei C (2017) Bacterial diversity of bacteriomes and organs of reproductive, digestive and excretory systems in two cicada species (Hemiptera: Cicadidae). PLoS One 12:e0175903

    Article  PubMed  PubMed Central  Google Scholar 

  32. Wu D, Daugherty SC, Van Aken SE, Pai GH, Watkins KL, Khouri H, Tallon LJ, Zaborsky JM, Dunbar HE, Tran PL, Moran NA, Eisen JA (2006) Metabolic complementarity and genomics of the dual bacterial symbiosis of sharpshooters. PLoS Biol 4:e188

    Article  PubMed  PubMed Central  Google Scholar 

  33. Urban JM, Cryan JR (2012) Two ancient bacterial endosymbionts have coevolved with the planthoppers (Insecta: Hemiptera: Fulgoroidea). BMC Evol Biol 12:87

    Article  PubMed  PubMed Central  Google Scholar 

  34. Watanabe K, Yukuhiro F, Matsuura Y, Fukatsu T, Noda H (2014) Intrasperm vertical symbiont transmission. Proc Natl Acad Sci USA 111:7433–7437

    Article  CAS  PubMed  Google Scholar 

  35. Campbell MA, Łukasik P, Meyer MM, Buckner M, Simon C, Veloso C, Michalik A, McCutcheon JP (2018) Changes in endosymbiont complexity drive host-level compensatory adaptations in cicadas. mBio 9:e02104–18

  36. Teixeira DDC, Saillard C, Eveillard S, Danet JL, Bové J (2005) 'Candidatus Liberibacter americanus’, associated with citrus Huanglongbing (greening disease) in São Paulo State, Brazil. Int J Syst Evol Microbiol 55:1857–1862

    Article  CAS  PubMed  Google Scholar 

  37. Hansen AK, Trumble JT, Stouthamer R, Paine TD (2008) A new Huanglongbing Species, Candidatus Liberibacter psyllaurous, found to infect tomato and potato, is vectored by the Psyllid Bactericera cockerelli (Sulc). Appl Environ Microbiol 74:5862–5865

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Zhou W, Nan X, Zheng Z, Wei C, He H (2015) Analysis of inter-individual bacterial variation in gut of cicada Meimuna mongolica (Hemiptera: Cicadidae). J Insect Sci 15:131

    Article  PubMed  PubMed Central  Google Scholar 

  39. Sakurai M, Koga R, Tsuchida T, Meng XY, Fukatsu T (2005) Rickettsia symbiont in the pea aphid Acyrthosiphon pisum: novel cellular tropism, effect on host fitness, and interaction with the essential symbiont Buchnera. Appl Environ Microbiol 71:4069–4075

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Noda H, Watanabe K, Kawai S, Yukuhiro F, Miyoshi T, Tomizawa M, Koizumi Y, Nikoh N, Fukatsu T (2012) Bacteriome-associated endosymbionts of the green rice leafhopper Nephotettix cincticeps (Hemiptera: Cicadellidae). Appl Entomol Zool 47:217–225

    Article  CAS  Google Scholar 

  41. Marubayashi JM, Kliot A, Yuki VA, Rezende JAM, Krause-Sakate R, Pavan MA, Ghanim M (2014) Diversity and localization of bacterial endosymbionts from whitefly species collected in Brazil. PLoS ONE 9:e108363

    Article  PubMed  PubMed Central  Google Scholar 

  42. Giorgini M, Bernardo U, Monti MM, Nappo AG, Gebiola M (2010) Rickettsia symbionts cause parthenogenetic reproduction in the parasitoid wasp Pnigalio soemius (Hymenoptera: Eulophidae). Appl Environ Microb 76:2589–2599

    Article  CAS  Google Scholar 

  43. Himler AG, Adachi-hagimori T, Bergen JE, Kozuch A, Kelly SE, Tabashnik BE, Chiel E, Duckworth VE, Dennehy TJ, Zchori-fein E, Hunter MS (2011) Rapid spread of a bacterial symbiont in an invasive whitefly is driven by fitness benefits and female bias. Science 332:254–256

    Article  CAS  PubMed  Google Scholar 

  44. Łukasik P, Guo H, Asch M, Ferrari J, Godfray H (2013) Unrelated facultative endosymbionts protect aphids against a fungal pathogen. Ecol Lett 16:214–218

    Article  PubMed  Google Scholar 

  45. Gupta R, Xu SY, Sharma P, Capalash N (2012) Characterization of MspNI (G/GWCC) and MspNII (R/GATCY), novel thermostable Type II restriction endonucleases from Meiothermus sp, isoschizomers of AvaII and BstYI. Mol Biol Rep 39:5607–5614

    Article  CAS  PubMed  Google Scholar 

  46. Ramalho MO, Moreau CS, Bueno OC (2019) The potential role of environment in structuring the microbiota of Camponotus across parts of the body. Advances in Entomolo 7:47–70

    Article  Google Scholar 

  47. Colman D, Toolson E, Takacs-Vesbach C (2012) Do diet and taxonomy influence insect gut bacterial communities? Mol Ecol 21:5124–5137

    Article  CAS  PubMed  Google Scholar 

  48. Ferrari J, Vavre F (2011) Bacterial symbionts in insects or the story of communities affecting communities. Philos T R SOC B 366:1389–1400

    Article  Google Scholar 

  49. Zytynska SE, Weisser WW (2016) The natural occurrence of secondary bacterial symbionts in aphids. Ecol Entomol 41:13–26

    Article  Google Scholar 

Download references

Acknowledgements

We thank Zhi Huang and Lingyan Bai (Northwest A&F University, China) for specimen collection.

Funding

This study was supported by the National Natural Science Foundation of China (Grant Numbers: 31772505, 32070476).

Author information

Authors and Affiliations

Authors

Contributions

DW, YL and CW compiled and designed the experiment. All the authors contributed to the interpretation of results and made a significant contribution to the preparation of the manuscript. All the authors have read, revised, and approved the final version of the manuscript.

Corresponding author

Correspondence to Cong Wei.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical Approval

This study was carried out in full compliance with the laws of the People’s Republic of China. No specific permits were required for our field investigation. All studied species are not included in the ‘List of Protected Animals in China’.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

284_2021_2435_MOESM1_ESM.xlsx

Table S1 Sample information of P. kaempferi used for amplicon sequencing. Table S2 Intraspecific genetic distance of P. kaempferi and interspecific genetic distance of Platypleura species based on COI gene. Table S3 Number of 16S rDNA sequences after quality filtering, de-noising, and chimera removal, number of operational taxonomic units, and alpha diversity metrics of bacteriomes and reproductive organs of P. kaempferi. Table S4 Relative abundance of the top ten bacteria in each sample of P. kaempferi. Table S5 The relative abundance of the 25 OTUs that showed a high similarity (> 98%) to partial sequence of Hodgkinia based on amplicon sequencing (XLSX 34 KB)

284_2021_2435_MOESM2_ESM.tif

Fig. S1 Sampling locations of P. kaempferi. (a) Satellite image. (b) Land cover of the three sampling locations constructed using the Engaging Citizens in Environmental Monitoring (https://geo-wiki.org/Security/login?BackURL=%2FApplication%2Findex.php) (TIF 11255 KB)

284_2021_2435_MOESM3_ESM.tif

Fig. S2 (a) Rarefaction curve of the 33 samples. Horizontal axis: the amount of effective sequencing data; vertical axis: the observed number of operational taxonomic units. (b) Rank abundance curve of the 33 samples. Horizontal axis: the ordinal sorted by OTUs abundance; vertical axis: the relative abundance of the corresponding OTUs (TIF 1269 KB)

284_2021_2435_MOESM4_ESM.tif

Fig. S3 Violin plots showing alpha diversity index of three different geographical populations of P. kaempferi. (a) Differences of ACE index. (b) Differences of Shannon index. The P value is represented by “*”. * 0.01 < P < 0.05, ** 0.001 < P < 0.01, *** P < 0.001. Note: the number of repetitions in ovaries and testes of Yangling population are less than three, so these two groups were not included in these plots. Zt, Zo, Zmb, and Zfb, respectively, represent the testes, ovaries, male’s bacteriomes, and female’s bacteriomes of P. kaempferi occurring in Zhouzhi; Yt, Yo, Ymb, and Yfb, respectively, represent the testes, ovaries, male’s bacteriomes, and female’s bacteriomes of P. kaempferi occurring in Yangling; Nt, No, Nmb, and Nfb, respectively, represent the testes, ovaries, male’s bacteriomes, and female’s bacteriomes of P. kaempferi occurring in Ningshan (TIF 514 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, D., Liu, Y., Su, Y. et al. Bacterial Communities in Bacteriomes, Ovaries and Testes of three Geographical Populations of a Sap-Feeding Insect, Platypleura kaempferi (Hemiptera: Cicadidae). Curr Microbiol 78, 1778–1791 (2021). https://doi.org/10.1007/s00284-021-02435-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-021-02435-7

Navigation