Skip to main content

Advertisement

Log in

Halomonas sedimenti sp. nov., a Halotolerant Bacterium Isolated from Deep-Sea Sediment of the Southwest Indian Ocean

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

A Gram-staining-negative, aerobic, flagellated, motile, rod-shaped, halophilic bacterium QX-2T was isolated from the deep-sea sediment of the Southwest Indian Ocean at a depth of 2699 m. Growth of the QX-2T bacteria was observed at 4–50 °C (optimum 30 °C), pH 5.0–12.0 (optimum pH 6.0) and 0%–30% NaCl (w/v) [optimum 4% (w/v)]. 16S rRNA gene sequencing revealed that strain QX-2T has the closest relationship with Halomonas titanicae DSM 22872T (98.2%). Phylogeny analysis classified the strain QX-2T into the genus Halomonas. The average nucleotide identity and DNA–DNA hybridization values between strain QX-2T and related type strains were lower than the currently accepted new species definition standards. Principal fatty acids (> 10%) determined were C16:0 (12.41%), C12:0-3OH (25.15%), summed feature 3 (C16:1 ω7c and/or C16:1 ω6c, 11.55%) and summed feature 8 (C18:1 ω7c and/or C18:1 ω6c, 16.06%). Identified polar lipids in strain QX-2T were diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, unidentified phospholipid, unidentified aminophospholipid and five unidentified lipids (L1–L5). The main respiratory quinone was Q-9. The content of DNA G+C was determined to be 54.34 mol%. The results of phylogenetic analysis, phenotypic analysis and chemotaxonomic studies showed that strain QX-2T represents a novel species within the genus Halomonas, for which the name Halomonas sedimenti sp. nov. is proposed, with the type strain QX-2T (MCCC 1A17876T = KCTC 82199T).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

MCCC:

Marine Culture Collection of China

CGMCC:

China General Microbiological Culture Collection Center

KCTC:

Korean Collection for Type Cultures

DSM:

Leibniz Institut Deutsche Sammlung von Mikroorganismen und Zellkulturen (German Collection of Microorganisms and Cell Cultures)

ANI:

Average nucleotide identity

DDH:

DNA–DNA hybridization

References

  1. Vreeland RH, Litchfield CD, Martin EL, Elliot E (1980) Halomonas elongata, a new genus and species of extremely salt-tolerant bacteria. Int J Syst Evol Microbiol 30(3):485–495. https://doi.org/10.1099/00207713-30-2-485

    Article  CAS  Google Scholar 

  2. Poli A, Nicolaus B, Denizci AA, Yavuzturk B, Kazan D (2013) Halomonas smyrnensis sp. nov., a moderately halophilic, exopolysaccharide-producing bacterium. Int J Syst Evol Microbiol 63(1):10–18. https://doi.org/10.1099/ijs.0.037036-0

    Article  PubMed  Google Scholar 

  3. Kaye JZ, Marquez MC, Ventosa A, Baross JA (2004) Halomonas neptunia sp. nov., Halomonas sulfidaeris sp. nov., Halomonas axialensis sp. nov. and Halomonas hydrothermalis sp. nov.: halophilic bacteria isolated from deep-sea hydrothermal-vent environments. Int J Syst Evol Microbiol 54(Pt 2):499–511. https://doi.org/10.1099/ijs.0.02799-0

    Article  CAS  PubMed  Google Scholar 

  4. Jiang J, Pan Y, Hu S, Zhang X, Hu B, Huang H, Hong S, Meng J, Li C, Wang K (2014) Halomonas songnenensis sp. nov., a moderately halophilic bacterium isolated from saline and alkaline soils. Int J Syst Evol Microbiol 64(Pt 5):1662–1669. https://doi.org/10.1099/ijs.0.056499-0

    Article  CAS  PubMed  Google Scholar 

  5. Gan L, Long X, Zhang H, Hou Y, Tian J, Zhang Y, Tian Y (2018) Halomonas saliphila sp. nov., a moderately halophilic bacterium isolated from a saline soil. Int J Syst Evol Microbiol 68(4):1153–1159. https://doi.org/10.1099/ijsem.0.002644

    Article  CAS  PubMed  Google Scholar 

  6. Wang T, Wei X, Xin Y, Zhuang J, Shan S, Zhang J (2016) Halomonas lutescens sp. nov., a halophilic bacterium isolated from a lake sediment. Int J Syst Evol Microbiol 66(11):4697–4704. https://doi.org/10.1099/ijsem.0.001413

    Article  CAS  PubMed  Google Scholar 

  7. Ming H, Ji WL, Li M, Zhao ZL, Cheng LJ, Niu MM, Zhang LY, Wang Y, Nie GX (2020) Halomonas lactosivorans sp. nov., isolated from salt-lake sediment. Int J Syst Evol Microbiol 70(5):3504–3512. https://doi.org/10.1099/ijsem.0.004209

    Article  CAS  PubMed  Google Scholar 

  8. Xu L, Xu XW, Meng FX, Huo YY, Oren A, Yang JY, Wang CS (2013) Halomonas zincidurans sp. nov., a heavy-metal-tolerant bacterium isolated from the deep-sea environment. Int J Syst Evol Microbiol 63(Pt 11):4230–4236. https://doi.org/10.1099/ijs.0.051656-0

    Article  CAS  PubMed  Google Scholar 

  9. Twardowska I (2004) Ecotoxicology, environmental safety, and sustainable development–challenges of the third millennium. Ecotoxicol Environ Saf 58(1):3–6. https://doi.org/10.1016/j.ecoenv.2004.03.008

    Article  CAS  PubMed  Google Scholar 

  10. Leon MJ, Hoffmann T, Sanchez-Porro C, Heider J, Ventosa A, Bremer E (2018) Compatible solute synthesis and import by the moderate halophile Spiribacter salinus: physiology and GENOMICS. Front Microbiol 9:108. https://doi.org/10.3389/fmicb.2018.00108

    Article  PubMed  PubMed Central  Google Scholar 

  11. Richter AA, Mais CN, Czech L, Geyer K, Hoeppner A, Smits SHJ, Erb TJ, Bange G, Bremer E (2019) Biosynthesis of the stress-protectant and chemical chaperon ectoine: biochemistry of the transaminase EctB. Front Microbiol 10:2811. https://doi.org/10.3389/fmicb.2019.02811

    Article  PubMed  PubMed Central  Google Scholar 

  12. Schwibbert K, Marin-Sanguino A, Bagyan I, Heidrich G, Lentzen G, Seitz H, Rampp M, Schuster SC, Klenk HP, Pfeiffer F, Oesterhelt D, Kunte HJ (2011) A blueprint of ectoine metabolism from the genome of the industrial producer Halomonas elongata DSM 2581 T. Environ Microbiol 13(8):1973–1994. https://doi.org/10.1111/j.1462-2920.2010.02336.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Van-Thuoc D, Guzman H, Quillaguaman J, Hatti-Kaul R (2010) High productivity of ectoines by Halomonas boliviensis using a combined two-step fed-batch culture and milking process. J Biotechnol 147(1):46–51. https://doi.org/10.1016/j.jbiotec.2010.03.003

    Article  CAS  PubMed  Google Scholar 

  14. Skerman VBD (1960) A guide to the identification of the genera of Bacteria. Q Rev Biol 36(2):870

    Google Scholar 

  15. Dong X-Z, Cai M-Y (2001) Determinative manual for routine bacteriology. Scientific Press, Beijing (English translation)

    Google Scholar 

  16. Fykse EM, Tjarnhage T, Humppi T, Eggen VS, Ingebretsen A, Skogan G, Olofsson G, Wasterby P, Gradmark PA, Larsson A, Dybwad M, Blatny JM (2015) Identification of airborne bacteria by 16S rDNA sequencing, MALDI-TOF MS and the MIDI microbial identification system. Aerobiologia 31(3):271–281. https://doi.org/10.1007/s10453-015-9363-9

    Article  PubMed  PubMed Central  Google Scholar 

  17. Sasser M (1990) Identification of bacteria by gas chromatography of cellular fatty acids. USFCC Newsl 20:1–6

    Google Scholar 

  18. Kates M (1986) Lipid extraction procedures. Techniques of lipidology. Elsevier, Amsterdam, pp 100–111

    Google Scholar 

  19. Collins MD, Jones D (1981) Distribution of isoprenoid quinone structural types in bacteria and their taxonomic implication. Microbiol Rev 45(2):316–354

    Article  CAS  Google Scholar 

  20. Olsen GJ, Woese CR (1993) Ribosomal RNA: a key to phylogeny. FASEB J 7:113–123. https://doi.org/10.2307/2420341

    Article  CAS  PubMed  Google Scholar 

  21. Lane DJ (1991) 16S/23S rRNA sequencing. Nucleic Acid Tech. Bacterial Syst. 463:115–175

    Google Scholar 

  22. Kim OS, Cho YJ, Lee K, Yoon SH, Kim M, Na H, Park SC, Jeon YS, Lee JH, Yi H, Won S, Chun J (2012) Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 62(Pt 3):716–721. https://doi.org/10.1099/ijs.0.038075-0

    Article  CAS  PubMed  Google Scholar 

  23. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y, Seo H, Chun J (2017) Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 67(5):1613–1617. https://doi.org/10.1099/ijsem.0.001755

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kumar S, Stecher G, Tamura KJMB (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 bigger dataset. Evolution 33(7):1870

    CAS  Google Scholar 

  25. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4(4):406–425. https://doi.org/10.1093/oxfordjournals.molbev.a040454

    Article  CAS  PubMed  Google Scholar 

  26. Felsenstein J (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17(6):368–376

    Article  CAS  Google Scholar 

  27. Rzhetsky A, Nei M (1992) Statistical properties of the ordinary least-squares, generalized least-squares, and minimum-evolution methods of phylogenetic inference. J Mol Evol 35(4):367–375

    Article  CAS  Google Scholar 

  28. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, Lesin VM, Nikolenko SI, Pham S, Prjibelski AD, Pyshkin AV, Sirotkin AV, Vyahhi N, Tesler G, Alekseyev MA, Pevzner PA (2012) SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 19(5):455–477. https://doi.org/10.1089/cmb.2012.0021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Oguntoyinbo FA, Cnockaert M, Cho GS, Kabisch J, Neve H, Bockelmann W, Wenning M, Franz C, Vandamme P (2018) Halomonas nigrificans sp. nov., isolated from cheese. Int J Syst Evol Microbiol 68(1):371–376. https://doi.org/10.1099/ijsem.0.002515

    Article  CAS  PubMed  Google Scholar 

  30. Meier-Kolthoff JP, Auch AF, Klenk HP, Goker M (2013) Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinform. 14:60. https://doi.org/10.1186/1471-2105-14-60

    Article  Google Scholar 

  31. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P, Tiedje JM (2007) DNA–NA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 57(Pt 1):81–91. https://doi.org/10.1099/ijs.0.64483-0

    Article  CAS  PubMed  Google Scholar 

  32. Sanchez-Porro C, Kaur B, Mann H, Ventosa A (2010) Halomonas titanicae sp. nov., a halophilic bacterium isolated from the RMS Titanic. Int J Syst Evol Microbiol 60(Pt 12):2768–2774. https://doi.org/10.1099/ijs.0.020628-0

    Article  CAS  PubMed  Google Scholar 

  33. Reddy GS, Raghavan PU, Sarita NB, Prakash JS, Nagesh N, Delille D, Shivaji S (2003) Halomonas glaciei sp. nov. isolated from fast ice of Adelie Land, Antarctica. Extremophiles 7(1):55–61. https://doi.org/10.1007/s00792-002-0295-2

    Article  CAS  PubMed  Google Scholar 

  34. Sorokin DY, Tindall BJ (2006) The status of the genus name Halovibrio Fendrich 1989 and the identity of the strains Pseudomonas halophila DSM 3050 and Halomonas variabilis DSM 3051. Request for an opinion. Int J Syst Evol Microbiol 56(Pt 2):487–489. https://doi.org/10.1099/ijs.0.63965-0

    Article  CAS  PubMed  Google Scholar 

  35. Lee JC, Kim YS, Yun BS, Whang KS (2015) Halomonas salicampi sp. nov., a halotolerant and alkalitolerant bacterium isolated from a saltern soil. Int J Syst Evol Microbiol 65(12):4792–4799. https://doi.org/10.1099/ijsem.0.000650

    Article  CAS  PubMed  Google Scholar 

  36. Dobson SJ, Franzmann PD (1996) Unification of the Genera Deleya (Baumann et al. 1983), Halomonas (Vreeland et al. 1980), and Halovibrio (Fendrich 1988) and the Species Paracoccus halodenitrificans (Robinson and Gibbons 1952) into a Single Genus, Halomonas, and Placement of the Genus Zymobacter in the Family Halomonadaceae. Int J Syst Evol Microbiol 46(2):550–558. https://doi.org/10.1099/00207713-46-2-550

    Article  CAS  Google Scholar 

  37. Franzmann PD, Wehmeyer U, Stackebrandt E (1988) Halomonadaceae fam. nov., a new family of the class proteobacteria to accommodate the genera halomonas and deleya. Syst Appl Microbiol 11(1):16–19. https://doi.org/10.1016/S0723-2020(88)80043-2

    Article  Google Scholar 

  38. Martinez-Canovas MJ, Quesada E, Llamas I, Bejar V (2004) Halomonas ventosae sp. nov., a moderately halophilic, denitrifying, exopolysaccharide-producing bacterium. Int J Syst Evol Microbiol 54(Pt 3):733–737. https://doi.org/10.1099/ijs.0.02942-0

    Article  CAS  PubMed  Google Scholar 

  39. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR, da Costa MS, Rooney AP, Yi H, Xu XW, De Meyer S, Trujillo ME (2018) Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 68(1):461–466. https://doi.org/10.1099/ijsem.0.002516

    Article  CAS  PubMed  Google Scholar 

  40. Richter M, Rossello-Mora R (2009) Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 106(45):19126–19131. https://doi.org/10.1073/pnas.0906412106

    Article  PubMed  Google Scholar 

  41. Edgcomb VP, Molyneaux SJ, Saito MA, Lloyd K, Boer S, Wirsen CO, Atkins MS, Teske A (2004) Sulfide ameliorates metal toxicity for deep-sea hydrothermal vent archaea. Appl Environ Microbiol 70(4):2551–2555. https://doi.org/10.1128/aem.70.4.2551-2555.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Fu F, Wang Q (2011) Removal of heavy metal ions from wastewaters: a review. J Environ Manage 92(3):407–418. https://doi.org/10.1016/j.jenvman.2010.11.011

    Article  CAS  PubMed  Google Scholar 

  43. Ben-Amotz A, Avron M (1983) Accumulation of metabolites by halotolerant algae and its industrial potential. Annu Rev Microbiol 37:95–119. https://doi.org/10.1146/annurev.mi.37.100183.000523

    Article  CAS  PubMed  Google Scholar 

  44. Oren A (2008) Microbial life at high salt concentrations: phylogenetic and metabolic diversity. Saline Syst 4:2. https://doi.org/10.1186/1746-1448-4-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Satyanarayana T (2012) Microorganisms in environmental management. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-2229-3

    Book  Google Scholar 

  46. Zaccai G, Bagyan I, Combet J, Cuello GJ, Deme B, Fichou Y, Gallat FX, Galvan Josa VM, von Gronau S, Haertlein M, Martel A, Moulin M, Neumann M, Weik M, Oesterhelt D (2016) Neutrons describe ectoine effects on water H-bonding and hydration around a soluble protein and a cell membrane. Sci Rep 6:31434. https://doi.org/10.1038/srep31434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Salvador M, Argandona M, Naranjo E, Piubeli F, Nieto JJ, Csonka LN, Vargas C (2018) Quantitative RNA-seq analysis unveils osmotic and thermal adaptation mechanisms relevant for ectoine production in Chromohalobacter salexigens. Front Microbiol 9:1845. https://doi.org/10.3389/fmicb.2018.01845

    Article  PubMed  PubMed Central  Google Scholar 

  48. Czech L, Hoppner A, Kobus S, Seubert A, Riclea R, Dickschat JS, Heider J, Smits SHJ, Bremer E (2019) Illuminating the catalytic core of ectoine synthase through structural and biochemical analysis. Sci Rep 9(1):364. https://doi.org/10.1038/s41598-018-36247-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Grammann K, Volke A, Kunte HJ (2002) New type of osmoregulated solute transporter identified in halophilic members of the bacteria domain: TRAP transporter TeaABC mediates uptake of ectoine and hydroxyectoine in Halomonas elongata DSM 2581(T). J Bacteriol 184(11):3078–3085. https://doi.org/10.1128/jb.184.11.3078-3085.2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Salvador M, Argandoña M, Pastor JM (2015) Contribution of RpoS to metabolic efficiency and ectoines synthesis during the osmoand heat-stress response in the halophilic bacterium Chromohalobacter salexigens. Environmental Microbiology Reports 7(2):301–311

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the COMRA Project of China (DY135-B2-16), COMRA Project of China (DY135-B2-08) and National Basic Research Program of China (973 Program) (No.2015CB755901).

Author information

Authors and Affiliations

Authors

Contributions

XQ performed the technical characterization on strain QX-2 and drafted the manuscript. LY, XC, HW and GX conceived the study and aided to draft the manuscript. XT conceived the study, participated in its design and coordination, and helped to draft the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Xixiang Tang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical Approval

This article does not contain any studies with human participants or animals.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qiu, X., Yu, L., Cao, X. et al. Halomonas sedimenti sp. nov., a Halotolerant Bacterium Isolated from Deep-Sea Sediment of the Southwest Indian Ocean. Curr Microbiol 78, 1662–1669 (2021). https://doi.org/10.1007/s00284-021-02425-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-021-02425-9

Navigation