Skip to main content
Log in

Antimicrobial Resistance analysis of Pathogenic Bacteria Isolated from Freshwater Nile Tilapia (Oreochromis niloticus) Cultured in Kerala, India

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Aquaculture of popular freshwater species, Nile tilapia (Oreochromis niloticus), accounts for around 71% of the total global tilapia production. Frequent use of antibiotics for treating bacterial infections in tilapia leads to the emergence of antimicrobial resistance. To mitigate the issue, proper evaluation methods and control strategies have to be implemented. This study was aimed to analyze the antimicrobial resistance of bacterial isolates from the infected Nile tilapia cultured in freshwater. The recovered isolates were identified as Pseudomonas entomophila, Edwardsiella tarda, Comamonas sp, Delftia tsuruhatensis, Aeromonas dhakensis, A. sobria, A. hydrophila, A. lacus, Plesiomonas shigelloides and Vogesella perlucida through phenotypic and genotypic analyses. Using Primer-E software, Shannon Wiener diversity index of the isolates was determined as H’ (loge) = 2.58. Antibiotic susceptibility test of the recovered strains through disk diffusion using 47 antibiotics, showed an elevated resistance pattern for Aeromonas hydrophila, Pseudomonas entomophila and Comamonas with higher multiple antibiotic resistance indexes (MAR index > 0.3). The minimum inhibitory concentration of antibiotics was > 256 mcg/ml for most of the resistant isolates. Meanwhile, all the recovered isolates were susceptible to amikacin, aztreonam, kanamycin, cefalexin, cefotaxime, levofloxacin, norfloxacin, piperacillin, and polymyxin-B.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Reantaso MB (2017) Tilapia lake virus (TiLV) caused by an orthomyxo-like virus (Family Orthomyxoviridae) threatening cultured and wild stocks of tilapia. FAO Aquacult Newsl 57:9–11

    Google Scholar 

  2. Fitzsimmons K (2000) Future trends of tilapia aquaculture in the Americas. In: Costa- Pierce BA, Rakocy JE (eds) Tilapia aquaculture in the Americas, vol 2. The World Aquaculture Society, Baton Rouge, pp 252–264

    Google Scholar 

  3. Thune R, Stanley LLA, Cooper RK (1993) Pathogenesis of gram- negative bacteria infections in warm-water fish. Fish Annu Rev Fish Dis 3:37–68

    Article  Google Scholar 

  4. Sheehan B, Labrie L, Lee YS, Wong FS, Chan J, Komar C, Wendover N, Grisez L (2009) Streptococcosis in tilapia - vaccination effective against main strep species. Glob Aquacult Advocate 5:72–74

    Google Scholar 

  5. Swaminathan TR, Ravi C, Kumar R, Dharmaratnam A, Basheer VS, Pradhan PK, Sood N (2018) Derivation of two tilapia (Oreochromis niloticus) cell lines for efficient propagation of Tilapia Lake Virus (TiLV). Aquaculture 492:206–214

    Article  Google Scholar 

  6. Soto E, Griffin M, Arauz M, Riofrio A, Martinez A, Cabrejos ME (2012) Edwardsiella ictaluri as the causative agent of mortality in cultured Nile tilapia. J Aquat Anim Health 24:81–90

    Article  Google Scholar 

  7. Nguyen VV, Dong HT, Senapin S, Pirarat N, Rodkhum C (2016) Francisella noatunensis subsp. orientalis, an emerging bacterial pathogen affecting cultured red tilapia (Oreochromis sp.) in Thailand. Aquac Res 47:3697–3702. https://doi.org/10.1128/CMR.00059-12

    Article  CAS  Google Scholar 

  8. Li Y, Cai SH (2011) Identification and pathogenicity of Aeromonas sobria on tail-rot disease in juvenile tilapia Oreochromis niloticus. Curr Microbiol 62:623–627

    Article  CAS  Google Scholar 

  9. Ashiru AW, Uaboi-Egbeni PO, Oguntowo JE, Idika CN (2011) Isolation and antibiotic profile of Aeromonas species from tilapia fish (Tilapia nilotica) and catfish (Clarias betrachus). Pak J Nutr 10(982):986

    Google Scholar 

  10. Miller RA, Harbottle H (2018) Antimicrobial drug resistance in fish pathogens. Microbiol Spectr 6:1

    Google Scholar 

  11. Preena PG, Swaminathan TR, Kumar VJR, Singh ISB (2020) Antimicrobial resistance in aquaculture: a crisis for concern. Biologia. https://doi.org/10.2478/s11756-020-00456-4

    Article  Google Scholar 

  12. Behera BK, Pradhan PK, Swaminathan TR, Sood N, Paria P, Das A, Verma DK, Kumar R, Yadav MK, Dev AK et al (2018) Emergence of Tilapia Lake Virus associated with mortalities of farmed Nile Tilapia Oreochromis niloticus (Linnaeus 1758) in India. Aquaculture 484:168–174

    Article  Google Scholar 

  13. Raj NS, Swaminathan TR, Dharmaratnam A, Raja SA, Ramraj D, Lal KK (2019) Aeromonas veronii caused bilateral exophthalmia and mass mortality in cultured Nile tilapia, Oreochromis niloticus (L.) in India. Aquaculture 512:734278

    Article  Google Scholar 

  14. Clarke KR, Gorley RN (2015) PRIMER v7: User Manual/Tutorial. PRIMER-E, Plymouth, p 296

    Google Scholar 

  15. Miller SA, Dyke DD, Polesk HF (1988) A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acid Res 16:12–15

    Google Scholar 

  16. Weisburg WG, Barns SM, Pelletier DA, Lane DJ (1991) 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173:697–703

    Article  CAS  Google Scholar 

  17. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739

    Article  CAS  Google Scholar 

  18. Clinical and Laboratory Standards Institute (CLSI) (2018) M100. Performance standards for antimicrobial susceptibility testing, 28th edn. Clinical and Laboratory Standards Institute, Wayne

    Google Scholar 

  19. Krumperman PH (1983) Multiple antibiotic resistance indexing of Escherichia coli to identify high-risk sources of fecal contamination of foods. Appl Environ Microbiol 46:165–170

    Article  CAS  Google Scholar 

  20. Torsvik V, Sorheim R, Gokseyr J (1996) Total bacterial diversity in soil and sediment communities-a review. J Ind Microbiol 17:170–l78

    CAS  Google Scholar 

  21. Mohanty BR, Sahoo PK (2007) Edwardsiellosis in fish: a brief review. J Biosci 32:1331–1344

    Article  CAS  Google Scholar 

  22. Miniero DY, Xavier de Oliverir MG, Paulo Vieira Cunha M, Soares Franco L, Pulecio Santos SL, Zanolli Moreno L et al (2018) Edwardsiella tarda outbreak affecting fishes and aquatic birds in Brazil. Vet Q 38:99–105. https://doi.org/10.1080/01652176.2018.1540070

    Article  Google Scholar 

  23. Yu JE, Cho MY, Kim JW, Kang HY (2012) Large antibiotic-resistance plasmid of Edwardsiella tarda contributes to virulence in fish. Microb Pathog 52:259–266

    Article  CAS  Google Scholar 

  24. Xu TT, Zhang XH (2014) Edwardsiella tarda: an intriguing problem in aquaculture. Aquaculture 431:129–135

    Article  Google Scholar 

  25. Olivier G, Lallier R, Lariviere S (1981) A toxigenic profile of Aeromonas hydrophila and Aeromonas sobria isolated from fish. Can J Microbiol 27:230–232

    Article  Google Scholar 

  26. Wang G, Clark CG, Liu C, Pucknell C, Munro CK, Kruk TMAC, Caldeira R, Woodward DL, Rodgers FG (2003) Detection and characterization of the hemolysin genes in Aeromonas hydrophila and Aeromonas sobria by multiplex PCR. J Clin Microbiol 41:1048–1054

    Article  CAS  Google Scholar 

  27. Alyahya SA, Ameen F, Al Niaeem KS, Alsaadi BA, Hadi S, Mostafa AA (2018) Histopathological studies of experimental Aeromonas hydrophila infection in blue tilapia, Oreochromis aureus. Saudi J Biol Sci 25:182–185

    Article  Google Scholar 

  28. Mzula A, Wambura PN, Mdegela RH, Shirima GM (2019) Phenotypic and molecular detection of Aeromonads infection in farmed Nile tilapia in Southern highland and Northern Tanzania. Heliyon 5:e02220. https://doi.org/10.1016/J.HELIYON.2019.E02220

    Article  PubMed  PubMed Central  Google Scholar 

  29. Hu M, Wang N, Pan ZH, Lu CP, Liu YJ (2012) Identity and virulence properties of Aeromonas isolates from diseased fish, healthy controls and water environment in China. Lett Appl Microbiol 55:224–233

    Article  CAS  Google Scholar 

  30. Soto-Rodriguez SA, Cabanillas-Ramos J, Alcaraz U, Gomez-Gil B, Romalde JL (2013) Identification and virulence of Aeromonas dhakensis, Pseudomonas mosselii and Microbacterium paraoxydans isolated from Nile tilapia, Oreochromis niloticus, cultivat- ed in Mexico. J Appl Microbiol 115:654–666

    Article  CAS  Google Scholar 

  31. Liu Z, Ke X, Lu M, Gao F, Cao J, Zhu H, Wang M (2015) Identification and pathological observation of a pathogenic Plesiomonas shigelloides strain isolated from cultured tilapia (Oreochromis niloticus). Wei Sheng Wu Xue Bao 55:96–106

    PubMed  CAS  Google Scholar 

  32. Preena PG, Dharmaratnam A, Raj NS, Kumar TVA, Raja SA, Nair RR, Swaminathan TR (2019) Diversity of antimicrobial resistant pathogens from a freshwater rnamental fish farm. Lett Appl Microbiol. https://doi.org/10.1111/lam.132

    Article  PubMed  Google Scholar 

  33. Eissa NME, Abou EEN, Shaheen AA, Abbass A (2010) Characterization of Pseudomonas species isolated from tilapia “Oreochromis niloticus” in Qaroun and Wadi-El-Rayan Lakes Egypt. Glob Vet 5:116–121

    Google Scholar 

  34. Wamala SP, Mugimba KK, Mutoloki S, Evensen Ø, Mdegela R, Byarugaba DK, Sorum H (2018) Occurrence and antibiotic susceptibility of fish bacteria isolated from Oreochromis niloticus (Nile tilapia) and Clarias gariepinus (African catfish) in Uganda. Fish Aquat Sci 21(1):6

    Article  CAS  Google Scholar 

  35. Serrano PH (2005) Responsible use of antibiotics in aquaculture, vol 469. Food and Agriculture Organization, Rome

    Google Scholar 

  36. Beceiro A, Tomas M, Bou G (2013) Antimicrobial resistance and virulence: a successful or deleterious association in the bacterial world? Clin Microbiol Rev 26:185–230

    Article  CAS  Google Scholar 

  37. Preena PG, Dharmaratnam A, Raj NS, Kumar TVA, Raja SA, Swaminathan TR (2019) Antibiotic susceptibility pattern of bacteria isolated from freshwater ornamental fish, guppy showing bacterial disease. Biologia 74:1055–1062. https://doi.org/10.2478/s11756-019-00261-8

    Article  CAS  Google Scholar 

  38. Parker J, Shaw J (2010) Aeromonas spp. clinical microbiology and disease. J Infect 20:1–10

    Google Scholar 

  39. Stratev D, Odeyemi OA (2015) Antimicrobial resistance of Aeromonas hydrophila isolated from different food sources: a mini- review. J Infect Public Health. https://doi.org/10.1016/j.jiph.2015.10.006

    Article  PubMed  Google Scholar 

  40. Patil H, Benet-Perelberg A, Naor A, Smirnov M, Ofek T, Nasser A, Minz D, Cytryn E (2016) Evidence of increased antibiotic resistance in phylogenetically-diverse Aeromonas isolates from semi-intensive fish ponds treated with antibiotics. Front Microbiol 7:1875. https://doi.org/10.3389/fmicb.2016.01875

    Article  PubMed  PubMed Central  Google Scholar 

  41. Maravić A, Skočibušić M, Šamanić I, Fredotović Ž, Cvjetan S, Jutronić M, Puizina J et al (2013) Aeromonas spp. simultaneously harbouring blaCTX-M-15, blaSHV-12, blaPER-1 and blaFOX-2, in wild-growing Mediterranean mussel (Mytilusgallo provincialis) from Adriatic Sea, Croatia. Int J Food Microbiol 166:301–308. https://doi.org/10.1016/j.ijfoodmicro.2013.07.010

    Article  PubMed  CAS  Google Scholar 

  42. Sorum H (1998) Mobile drug resistance genes among fish bacteria. APMIS 106:74–76. https://doi.org/10.1111/j.1600-0463.1998.tb05652.x

    Article  Google Scholar 

  43. Noor Uddin GM, Larsen MH, Guardabassi L, Dalsgaard A (2013) Bacterial flora and antimicrobial resistance in raw frozen cultured seafood imported to Denmark. J Food Prot 76:490–499

    Article  Google Scholar 

  44. Huys G, Bartie K, Cnockaert M et al (2007) Biodiversity of chloramphenicol resistant mesophilic heterotrophs from Southeast Asian aquaculture environments. Res Microbiol 158:228–235

    Article  CAS  Google Scholar 

  45. Aoki T, Kitao T (1981) `Drug resistance and transferable R plasmids in Edwardsiella tarda from fish culture ponds. Fish Pathol 15:277–281

    Article  Google Scholar 

  46. Kathleen MM, Samuel L, Felecia C, Reagan EL, Kasing A, Lesley M, Toh SC (2016) Antibiotic resistance of diverse bacteria from aquaculture in Borneo. Int J Microbiol 2016:9

    Article  CAS  Google Scholar 

  47. Xu H, Davies J, Miao V (2007) Molecular characterization of class 3 integrons from Delftia spp. J Bacteriol 189:6276–6283

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The corresponding author thanks the Department of Science and Technology (SERB) for providing National Postdoctoral Research fellowship (PDF/2017/000378) and Director, ICAR-National Bureau of Fish Genetic Resources, Lucknow for the support. We are also grateful to Dr. V.J. Rejish Kumar, Department of Aquaculture, Kerala University of Fisheries and Ocean Studies for the sincere proofreading and English editing support.

Author information

Authors and Affiliations

Authors

Contributions

Following contributions had been done by the authors: Conceived of or designed study: PGP and TRS. Performed research: PGP and AD. Analyzed data: PGP and AD. Manuscript draft: PGP.

Corresponding author

Correspondence to P. G. Preena.

Ethics declarations

Conflict of interest

The authors have no conflict of interest to declare.

Ethical Approval

All the experimental challenge procedures in this study (Proposal number: NBFGR/IAEC/2019/0014) were evaluated and approved by Institute Animal ethics Committee (IAEC) of ICAR National Bureau of Fish Genetic Resources (NBFGR) (CPCESA Registration No: 909/GO/Re/S/05/CPCSEA dated 09.09.2005 and CPCSEA Ref file No. 25/111/2014-CPCESA dated 05th December 2018) vide Approval Number G/IAEC/2019/1 dated 04th October 2019.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Preena, P.G., Dharmaratnam, A. & Swaminathan, T.R. Antimicrobial Resistance analysis of Pathogenic Bacteria Isolated from Freshwater Nile Tilapia (Oreochromis niloticus) Cultured in Kerala, India. Curr Microbiol 77, 3278–3287 (2020). https://doi.org/10.1007/s00284-020-02158-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-020-02158-1

Navigation