Skip to main content
Log in

Rapid Detection of Escherichia coli by β-Galactosidase Biosensor Based on ZnO NPs and MWCNTs: A Comparative Study

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

The need for alternative approaches for identifying pathogens has led researchers to focus on nanobiotechnology. In this study, zinc oxide nanoparticles (ZnO NPs) and multi-wall carbon nanotubes (MWCNTs) were used as marker molecules. After measuring the best concentration of these nanomaterials to inhibit the lactase activity of the beta-galactosidase enzymes by binding to them, different concentrations of Escherichia coli were added to the medium and their detection ability was finally compared with each other. Due to small size and high reactivity, these compounds are able to detect very low amount of bacteria in the ambient. In fact, the bacteria are attached to the nanoparticles and detach them from the enzyme and lead to substrate decomposition by the enzyme. MWCNTs exhibited better performance than ZnO NPs in detection of bacteria at very low concentration of 101 CFU/ml in 15 min. As a result, they are very appropriate to be utilized especially in the food industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Jannat Y, Mohammed Raju A, Byoung-Kwan C (2016) Biosensors and their applications in food safety: a review. J Biosyst Eng 41:240–254. https://doi.org/10.5307/JBE.2016.41.3.240

    Article  Google Scholar 

  2. Mehrotra P (2016) Biosensors and their applications: a review. J Oral Biol Craniofac Res 6:153–159. https://doi.org/10.1016/j.jobcr.2015.12.002

    Article  PubMed  PubMed Central  Google Scholar 

  3. Ahari H (2014) The Staphylococcus aureus exotoxin recognition using a Sensor designed by nanosilica and SEA genotyping by multiplex PCR. Appl Food Biotechnol 1:37–44. https://doi.org/10.22037/afb.v1i1.7126

    Article  Google Scholar 

  4. Chai Y, Horikawa S, Simonian A, Dyer D, Chin BA (2013) Wireless magnetoelastic biosensors for the detection of Salmonella on fresh produce. Proc Int Conf Sens Technol ICST 204:174–177

    Google Scholar 

  5. Ahmed A, Rushworth JV, Hirst NA, Millner PA (2014) Biosensors for whole-cell bacterial detection. Clin Microbiol Rev 27(3):631–646. https://doi.org/10.1128/CMR.00120-13

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Choi Y et al (2018) Rapid detection of Escherichia coli in fresh foods using a combination of enrichment and PCR analysis. Korean J Food Sci Anim Resour 38:829–834. https://doi.org/10.5851/kosfa.2018.e19

    Article  PubMed  PubMed Central  Google Scholar 

  7. Yamada K, Kim CT, Kim JH, Chung JH, Lee HG, Jun S (2014) Single walled carbon nanotube-based junction biosensor for detection of Escherichia coli. PLoS ONE. https://doi.org/10.1371/journal.pone.0105767

    Article  PubMed  PubMed Central  Google Scholar 

  8. Ali MA, Eldin TAS, Moghazy GME, Tork IM, Omara II (2014) Original research article detection of E. coli O157: H7 in feed samples using gold nanoparticles sensor. Int J Curr Microbiol Appl Sci 3(6):697–708

    Google Scholar 

  9. Clark LC, Lyons C (1962) Electrode systems for continuous monitoring in cardiovascular surgery. Ann N Y Acad Sci 102:29–45. https://doi.org/10.1111/j.1749-6632.1962.tb13623.x

    Article  PubMed  CAS  Google Scholar 

  10. Nguyen HH, Lee SH, Lee UJ, Fermin CD, Kim M (2019) Immobilized enzymes in biosensor applications. Materials. https://doi.org/10.3390/ma12010121

    Article  PubMed  PubMed Central  Google Scholar 

  11. Lerner MB, Goldsmith BR, McMillon R, Dailey J, Pillai S, Singh SR, Johnson ATC (2011) A carbon nanotube immunosensor for Salmonella. AIP Adv 1(4):042127. https://doi.org/10.1063/1.3658573

    Article  CAS  Google Scholar 

  12. Zhao Z, Lei W, Zhang X, Wang B, Jiang H (2010) ZnO-based amperometric enzyme biosensors. Sensors 10:1216–1231. https://doi.org/10.3390/s100201216

    Article  PubMed  CAS  Google Scholar 

  13. Malik P, Katyal V, Malik V, Asatkar A, Inwati G, Mukherjee TK (2013) Nanobiosensors: concepts and variations. ISRN Nanomater. https://doi.org/10.1155/2013/327435

    Article  Google Scholar 

  14. Ansari SA, Husain Q (2011) Bioaffinity based immobilization of almond (Amygdalus communis) β-galactosidase on con A-layered calcium alginate-cellulose beads: its application in lactose hydrolysis in batch and continuous mode. Iran J Biotechnol 9:290–301

    CAS  Google Scholar 

  15. Paul B, Panigrahi AK, Singh V, Singh SG (2017) A multi-walled carbon nanotube-zinc oxide nanofiber based flexible chemiresistive biosensor for malaria biomarker detection. Analyst 142:2128–2135

    Article  Google Scholar 

  16. Lin SY, Chang SJ, Hsueh TJ (2014) ZnO nanowires modified with Au nanoparticles for nonenzymatic amperometric sensing of glucose. Appl Phys Lett 104:193704. https://doi.org/10.1063/1.4875028

    Article  CAS  Google Scholar 

  17. Samadi M, Shivaee HA, Zanetti M, Pourjavadi A, Moshfegh A (2012) Visible light photocatalytic activity of novel MWCNT-doped ZnO electrospun nanofibers. J Mol Catal A Chem 359:42–48. https://doi.org/10.1016/j.molcata.2012.03.019

    Article  CAS  Google Scholar 

  18. Meraat R, Ziabari AA, Issazadeh K, Shadan N, Jalali KM (2016) Synthesis and characterization of the antibacterial activity of zinc oxide nanoparticles against Salmonella typhi. Acta Metall Sin (English Lett) 29:601–608. https://doi.org/10.1007/s40195-016-0439-5

    Article  CAS  Google Scholar 

  19. Cullity BD (1978) Elements of X-ray diffraction, 2nd edn. Addison-Wesley, Phillippines

    Google Scholar 

  20. Juan JC, Jiang Y, Meng X, Cao W, Yarmo MA, Zhang J (2007) Supported zirconium sulfate on carbon nanotubes as water-tolerant solid acid catalyst. Mater Res Bull 42:1278–1285. https://doi.org/10.1016/j.materresbull.2006.10.017

    Article  CAS  Google Scholar 

  21. Zhang X, Fu J, Zhang Y, Lei L (2008) A nitrogen functionalized carbon nanotube cathode for highly efficient electrocatalytic generation of H2O2 in Electro-Fenton system. Sep Purif Technol 64:116–123. https://doi.org/10.1016/j.seppur.2008.07.020

    Article  CAS  Google Scholar 

  22. Alias SS, Ismail AB, Mohamad AA (2010) Effect of pH on ZnO nanoparticle properties synthesized by sol-gel centrifugation. J Alloys Compd 499:231–237. https://doi.org/10.1016/j.jallcom.2010.03.174

    Article  CAS  Google Scholar 

  23. Garg P, Singh BP, Kumar G, Gupta T, Pandey I, Seth RK, Tandon RP, Mathur RB (2011) Effect of dispersion conditions on the mechanical properties of multi-walled carbon nanotubes based epoxy resin composites. J Polym Res 18:1397–1407. https://doi.org/10.1007/s10965-010-9544-8

    Article  CAS  Google Scholar 

  24. Hu CY, Xu YJ, Duo SW, Zhang RF, Li MS (2009) Non-covalent functionalization of carbon nanotubes with surfactants and polymers. J Chin Chem Soc 56:234–239. https://doi.org/10.1002/jccs.200900033

    Article  CAS  Google Scholar 

  25. Kavinkumar T, Manivannan S (2016) Synthesis, characterization and gas sensing properties of graphene oxide-multiwalled carbon nanotube composite. J Mater Sci Technol 32:626–632. https://doi.org/10.1016/j.jmst.2016.03.017

    Article  CAS  Google Scholar 

  26. Mlichová Z, Rosenberg M (2006) Current trends of beta-galactosidase application in food technology. J Food Nutr Res 45:47–54

    Google Scholar 

  27. Luo Z, Zhu M, Guo M, Lian Z, Tong W, Wang J, Zhang B, Wei W (2017) Ultrasonic-assisted dispersion of ZnO nanoparticles and its inhibition activity to Trichoderma viride. J Nanosci Nanotechnol 18:2352–2360. https://doi.org/10.1166/jnn.2018.14397

    Article  CAS  Google Scholar 

  28. Ong CB, Annuar MSM (2018) Immobilization of cross-linked tannase enzyme on multiwalled carbon nanotubes and its catalytic behavior. Prep Biochem Biotechnol 48:181–187. https://doi.org/10.1080/10826068.2018.1425707

    Article  PubMed  CAS  Google Scholar 

  29. Wibowo KM, Ahmad SA, Sari Y, Saim H, Nurliyana MR, Mansor Z, Sahdan MZ, Muslihati A (2018) The detection method of Escherichia coli in water resources: a review. J Phys Conf Ser 995:012065. https://doi.org/10.1088/1742-6596/995/1/012065

    Article  CAS  Google Scholar 

  30. Li Z, Ma J, Ruan J, Zhuang X (2019) Using positively charged magnetic nanoparticles to capture bacteria at ultralow concentration. Nanoscale Res Lett 14:195. https://doi.org/10.1186/s11671-019-3005-z

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Hwang JY, Eltohamy M, Kim HW, Shin US (2012) Self-assembly of positively charged carbon nanotubes with oppositely charged metallic surface. Appl Surf Sci 258:6455–6459. https://doi.org/10.1016/j.apsusc.2012.03.060

    Article  CAS  Google Scholar 

  32. Andrade CAS, Nascimento JM, Oliveira IS, De Oliveira CVJ, De Melo CP, Franco OL, Oliveira MDL (2015) Nanostructured sensor based on carbon nanotubes and clavanin A for bacterial detection. Colloids Surf B Biointerfaces 135:833–839. https://doi.org/10.1016/j.colsurfb.2015.03.037

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Abdolahzadeh Ziabari.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meraat, R., Issazadeh, K., Abdolahzadeh Ziabari, A. et al. Rapid Detection of Escherichia coli by β-Galactosidase Biosensor Based on ZnO NPs and MWCNTs: A Comparative Study. Curr Microbiol 77, 2633–2641 (2020). https://doi.org/10.1007/s00284-020-02040-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-020-02040-0

Navigation