Skip to main content
Log in

A colorimetric immunoassay for determination of Escherichia coli O157:H7 based on oxidase-like activity of cobalt-based zeolitic imidazolate framework

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Cobalt-based zeolitic imidazolate framework nanosheets (ZIF-67) with oxidase-like catalytic activities as an immunoprobe were employed to enhance the sensitivity of an immunoassay. ZIF-67 was synthesized via the solvothermal method using 2-methylimidazole and cobalt dichloride as substrates. A colorimetric immunoassay for Escherichia coli (E. coli) O157:H7 was designed. Preparation of the immunoprobe involved self-polymerized dopamine being applied for the surface modification of ZIF-67 nanosheets in order to bind to the antibody, which was used to identify E. coli O157:H7. ZIF-67 catalyze the oxidation of 3,3′,5,5′-tetramethylbiphenyl (TMB) and produced a color change from colorless to blue. Upon reaction termination, the absorbance was measured at 450 nm. By combining ZIF-67@PDA catalyzed chromogenic reaction with antibody recognition and magnetic separation, the limit of determination is 12 CFU mL−1 and the linear range is 30 to 3.0 × 108 CFU mL−1. The proposed colorimetric immunoassay was successfully utilized to detect E. coli O157:H7 of spiked food samples.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Güner A, Çevik E, Şenel M, Alpsoy L (2017) An electrochemical immunosensor for sensitive detection of Escherichia coli O157:H7 by using chitosan, MWCNT, polypyrrole with gold nanoparticles hybrid sensing platform. Food Chem 229:358–365. https://doi.org/10.1016/j.foodchem.2017.02.083

    Article  CAS  PubMed  Google Scholar 

  2. García-Aljaro C, Muniesa M, Blanco JE, Blanco M, Blanco J, Jofre J, Blanch AR (2005) Characterization of Shiga toxin-producing Escherichia coli isolated from aquatic environments. FEMS Microbiol Lett 246(1):55–65. https://doi.org/10.1016/j.femsle.2005.03.038

    Article  CAS  PubMed  Google Scholar 

  3. Liu Y, Singh P, Mustapha A (2018) High-resolution melt curve PCR assay for specific detection of E. coli O157:H7 in beef. Food Control 86:275–282. https://doi.org/10.1016/j.foodcont.2017.11.025

    Article  CAS  Google Scholar 

  4. Wu L, Li G, Xu X, Zhu L, Huang R, Chen X (2019) Application of nano-ELISA in food analysis: recent advances and challenges. TrAC Trends Anal Chem 113:140–156. https://doi.org/10.1016/j.trac.2019.02.002

    Article  CAS  Google Scholar 

  5. Sharma H, Mutharasan R (2013) Review of biosensors for foodborne pathogens and toxins. Sensors Actuators B Chem 183(20):535–549. https://doi.org/10.1016/j.snb.2013.03.137

    Article  CAS  Google Scholar 

  6. Sun T, Xia N, Yuan F (2020) A colorimetric method for determination of the prostate specific antigen based on enzyme-free cascaded signal amplification via peptide-copper(II) nanoparticles. Microchim Acta 187:116–123. https://doi.org/10.1007/s00604-019-4074-5

    Article  CAS  Google Scholar 

  7. Nasir M, Nawaz MH, Latif U (2017) An overview on enzyme-mimicking nanomaterials for use in electrochemical and optical assays. Microchim Acta 184:323–342. https://doi.org/10.1007/s00604-016-2036-8

    Article  CAS  Google Scholar 

  8. Lafleur J, Jönsson A, Senkbeil S, Kutter J (2015) Recent advances in lab-on-a-chip for biosensing applications. Biosens Bioelectron 76:213–233. https://doi.org/10.1016/j.bios.2015.08.003

    Article  CAS  PubMed  Google Scholar 

  9. Ma S, Zhou HC, Zhou HC (2010) Gas storage in porous metal-organic frameworks for clean energy applications. Chem Commun 46(1):44–53. https://doi.org/10.1039/b916295j

  10. Si X, Jiao C, Li F, Zhang J, Wang S, Liu S, Li Z, Sun L, Xu F, Gabelica Z, Schick C (2011) High and selective CO2 uptake, H2 storage and methanol sensing on the amine-decorated 12-connected MOF CAU-1. Energy Environ Sci 4(11):4522–4527. https://doi.org/10.1039/C1EE01380G

    Article  CAS  Google Scholar 

  11. Yoon M, Suh K, Natarajan S, Kim K (2013) Proton conduction in metal–organic frameworks and related modularly built porous solids. Angew Chem Int Ed 52(10):2688–2700. https://doi.org/10.1002/anie.201206410

    Article  CAS  Google Scholar 

  12. Cepeda J, Pérez-Yáñez S, Beobide G, Castillo O, García JÁ, Luque A (2015) Photoluminescence tuning and water detection of yttrium diazinedicarboxylate materials through lanthanide doping. Eur J Inorg Chem 2015(16):2650–2663

    Article  CAS  Google Scholar 

  13. Qin J-S, Yuan S, Lollar C, Pang J, Alsalme A, Zhou H-C (2018) Stable metal–organic frameworks as a host platform for catalysis and biomimetics. Chem Commun 54(34):4231–4249. https://doi.org/10.1039/C7CC09173G

    Article  CAS  Google Scholar 

  14. Damborský P, Švitel J, Katrlík J (2016) Optical biosensors. Essays Biochem 60(1):91–100. https://doi.org/10.1042/EBC20150010

    Article  PubMed  PubMed Central  Google Scholar 

  15. Anik U, Timur S, Dursun Z (2019) Metal organic frameworks in electrochemical and optical sensing platforms: a review. Microchim Acta 186(3):196–211. https://doi.org/10.1007/s00604-019-3321-0

    Article  CAS  Google Scholar 

  16. Xu S (2012) Electromechanical biosensors for pathogen detection. Microchim Acta 178(3–4):245–260. https://doi.org/10.1007/s00604-012-0831-4

    Article  CAS  Google Scholar 

  17. Xu M, Wang R, Li Y (2017) Electrochemical biosensors for rapid detection of Escherichia coli O157:H7. Talanta 162:511–522. https://doi.org/10.1016/j.talanta.2016.10.050

    Article  CAS  PubMed  Google Scholar 

  18. Xue L, Zheng L, Zhang H, Jin X, Lin J (2018) An ultrasensitive fluorescent biosensor using high gradient magnetic separation and quantum dots for fast detection of foodborne pathogenic bacteria. Sensors Actuators B Chem 265:318–325. https://doi.org/10.1016/j.snb.2018.03.014

    Article  CAS  Google Scholar 

  19. Zhou L, Shen Q, Zhao P, Xiang B, Nie Z, Huang Y, Yao S (2013) Fluorescent detection of copper(II) based on DNA-templated click chemistry and graphene oxide. Methods 64(3):299–304. https://doi.org/10.1016/j.ymeth.2013.09.001

    Article  CAS  PubMed  Google Scholar 

  20. Ortiz-Gómez I, Salinas-Castillo A, García AG, Álvarez-Bermejo JA, de Orbe-Payá I, Rodríguez-Diéguez A, Capitán-Vallvey LF (2017) Microfluidic paper-based device for colorimetric determination of glucose based on a metal-organic framework acting as peroxidase mimetic. Microchim Acta 185(1):47. https://doi.org/10.1007/s00604-017-2575-7

    Article  CAS  Google Scholar 

  21. Yang H, Yang R, Zhang P, Qin Y, Chen T, Ye F (2017) A bimetallic (Co/2Fe) metal-organic framework with oxidase and peroxidase mimicking activity for colorimetric detection of hydrogen peroxide. Microchim Acta 184(12):4629–4635. https://doi.org/10.1007/s00604-017-2509-4

    Article  CAS  Google Scholar 

  22. Wang S, Deng W, Yang L, Tan Y, Xie Q, Yao S (2017) Copper-based metal–organic framework nanoparticles with peroxidase-like activity for sensitive colorimetric detection of Staphylococcus aureus. ACS Appl Mater Interfaces 9(29):24440–24445. https://doi.org/10.1021/acsami.7b07307

    Article  CAS  PubMed  Google Scholar 

  23. Bhardwaj N, Bhardwaj SK, Mehta J, Kim KH, Deep A (2017) MOF-bacteriophage biosensor for highly sensitive and specific detection of S. aureus. ACS Appl Mater Interfaces 9(39):33589–33598. https://doi.org/10.1021/acsami.7b07818

    Article  CAS  PubMed  Google Scholar 

  24. Pan Y, Li H, Zhang X-X, Zhang Z, Tong X-S, Jia C-Z, Liu B, Sun C-Y, Yang L-Y, Chen G-J (2015) Large-scale synthesis of ZIF-67 and highly efficient carbon capture using a ZIF-67/glycol-2-methylimidazole slurry. Chem Eng Sci 137:504–514. https://doi.org/10.1016/j.ces.2015.06.069

    Article  CAS  Google Scholar 

  25. Si J, Yang H (2011) Preparation and characterization of bio-compatible Fe3O4@Polydopamine spheres with core/shell nanostructure. Mater Chem Phys 128(3):519–524. https://doi.org/10.1016/j.matchemphys.2011.03.039

    Article  CAS  Google Scholar 

  26. Jiao L, Wang Y, Jiang H-L, Xu Q (2018) Metal–organic frameworks as platforms for catalytic applications. Adv Mater 30(37):1703663. https://doi.org/10.1002/adma.201703663

    Article  CAS  Google Scholar 

  27. Z-h Z, J-l Z, J-m L, Z-h X, Chen X (2016) Selective and competitive adsorption of azo dyes on the metal–organic framework ZIF-67. Water Air Soil Pollut 227(12):471. https://doi.org/10.1007/s11270-016-3166-7

    Article  CAS  Google Scholar 

  28. Zhou K, Mousavi B, Luo Z, Phatanasri S, Chaemchuen S, Verpoort F (2017) Characterization and properties of Zn/Co zeolitic imidazolate frameworks vs. ZIF-8 and ZIF-67. J Mater Chem A 5(3):952–957. https://doi.org/10.1039/C6TA07860E

    Article  CAS  Google Scholar 

  29. Tang J, Shi Z, Berry RM, Tam KC (2015) Mussel-inspired green metallization of silver nanoparticles on cellulose nanocrystals and their enhanced catalytic reduction of 4-nitrophenol in the presence of β-cyclodextrin. Ind Eng Chem Res 54(13):3299–3308

    Article  CAS  Google Scholar 

  30. Xiong C, Zhang T, Kong W, Zhang Z, Qu H, Chen W, Wang Y, Luo L, Zheng L (2018) ZIF-67 derived porous Co3O4 hollow nanopolyhedron functionalized solution-gated graphene transistors for simultaneous detection of glucose and uric acid in tears. Biosens Bioelectron 101:21–28. https://doi.org/10.1016/j.bios.2017.10.004

    Article  CAS  PubMed  Google Scholar 

  31. Zeng T, Zhang X, Niu H, Ma Y, Li W, Cai Y (2013) In situ growth of gold nanoparticles onto polydopamine-encapsulated magnetic microspheres for catalytic reduction of nitrobenzene. Appl Catal B Environ 134-135:26–33. https://doi.org/10.1016/j.apcatb.2012.12.037

    Article  CAS  Google Scholar 

  32. Wang S, Xu D, Ma L, Qiu J, Wang X, Dong Q, Zhang Q, Pan J, Liu Q (2018) Ultrathin ZIF-67 nanosheets as a colorimetric biosensing platform for peroxidase-like catalysis. Anal Bioanal Chem 410(13):7145–7152. https://doi.org/10.1007/s00216-018-1317-y

    Article  CAS  PubMed  Google Scholar 

  33. Wang X, Cao W, Qin L, Lin T, Chen W, Lin S, Yao J, Zhao X, Zhou M, Hang C, Wei H (2017) Boosting the peroxidase-like activity of nanostructured nickel by inducing its 3+ oxidation state in LaNiO(3) perovskite and its application for biomedical assays. Theranostics 7(8):2277–2286. https://doi.org/10.7150/thno.19257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Wang X, Gao XJ, Qin L, Wang C, Song L, Zhou Y-N, Zhu G, Cao W, Lin S, Zhou L, Wang K, Zhang H, Jin Z, Wang P, Gao X, Wei H (2019) e(g) occupancy as an effective descriptor for the catalytic activity of perovskite oxide-based peroxidase mimics. Nat Commun 10(1):704–712. https://doi.org/10.1038/s41467-019-08657-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Lunhong A, Lili L, Caihong Z, Jian F, Jing J (2013) MIL-53(Fe): a metal-organic framework with intrinsic peroxidase-like catalytic activity for colorimetric biosensing. Chemistry 19(45):15105–15108

    Article  Google Scholar 

  36. Song C, Liu J, Li J, Liu Q (2016) Dual FITC lateral flow immunoassay for sensitive detection of Escherichia coli O157:H7 in food samples. Biosens Bioelectron 85:734–739. https://doi.org/10.1016/j.bios.2016.05.057

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

We acknowledge the financial support of the National Key R&D Program of China (2018YFC1602500), the Science and Technology Innovation Plan of Shanghai (No. 18495800400), the National Natural Science Foundation of China (No. 81572809, 31871897), and the National Natural Science Foundation for Young Scientists of China (No. 81502504, 31801455).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yong Huang or Qing Liu.

Ethics declarations

Conflict of interest

The author(s) declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 2188 kb).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, S., Xu, D., Ding, C. et al. A colorimetric immunoassay for determination of Escherichia coli O157:H7 based on oxidase-like activity of cobalt-based zeolitic imidazolate framework. Microchim Acta 187, 506 (2020). https://doi.org/10.1007/s00604-020-04407-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-020-04407-3

Keywords

Navigation