Skip to main content
Log in

Reclassification of Brevibacterium frigoritolerans DSM 8801T as Bacillus frigoritolerans comb. nov. Based on Genome Analysis

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

16S rRNA gene sequence analysis showed that the type strain Brevibacterium frigoritolerans DSM 8801T had the highest similarity (99.7%) with the reference strain Bacillus simplex NBRC 15720T, followed by Bacillus muralis DSM 16288T (99.6%), Bacillus butanolivorans DSM 18926T (99.5%), and Bacillus loiseleuriae FJAT-27997T (97.9%). This relationship is confirmed by the phylogenetic analysis indicating that Bre. frigoritolerans DSM 8801T fell in the genus Bacillus group and formed a clade with the closely related Bacillus species. Average nucleotide identity and in silico DNA–DNA hybridization (isDDH) values between strain DSM 8801T and the most closed reference strain Bac. simplex NBRC 15720T were both much lower than species definition threshold values of 95% and 70%, respectively, which indicated strain DSM 8801T should not be affiliated to one of the validly named Bacillus species. The percentage of conserved protein (POCP) values between the strain DSM 8801T and the type strains of the above species were 80.7%, 69.2%, 72.2%, 53.6%, and 50.0%, respectively, higher than the genus definition threshold value of 50%. The main isoprenoid quinone of strain DSM 8801T was MK-7, the main polar lipids were diphosphatidylglycerol (DPG), phosphatidylglycerol (PG), and phosphatidyl ethanolamine (PE), and the major fatty acids were anteiso-C15:0 and iso-C15:0. On the basis of the phenotypic, chemotaxonomic, phylogenetic and genomic characteristics, Bre. frigoritolerans DSM 8801T should belong to the genus Bacillus, and be proposed to reclassify as Bacillus frigoritolerans comb. nov., with the type strain DSM 8801T (=ATCC 25097T  = CCUG 43489T  = CIP 67.20T  = JCM 11681T).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

isDDH:

In silico DNA–DNA hybridization

ANI:

Average nucleotide identity

DPG:

Diphosphatidylglycerol

PG:

Phosphatidylglycerol

PE:

Phosphatidyl ethanolamine

References

  1. Skerman VBD, Mcgowan V, Sneath PHA (1980) Approved lists of bacterial names. Int J Syst Bacteriol 30:225–420

    Article  Google Scholar 

  2. Jones D, Keddie RM (1986) Genus Brevibacterium. In: Sneath PHA, Mair NS, Sharp HE, Holt JG (eds) Bergey’s manual of systematic bacteriology, vol 2. Williams and Wilkins, Baltimore, pp 1301–1313

    Google Scholar 

  3. Gelsomino R, Vancanneyt M, Vandekerckhove TM et al (2004) Development of a 16S rRNA primer for the detection of Brevibacterium spp. Lett Appl Microbiol 38:532–535

    Article  CAS  PubMed  Google Scholar 

  4. Ludwig W, Euzéby J, Schumann P et al (2012) Genus Brevibacterium. In: Goodfellow M, Kämpfer P, Busse H-J, Trujillo ME, Suzuki K-I, Ludwig W, Whitman WB (eds) Bergey’s manual of systematic bacteriology, vol 5. Springer, New York

    Google Scholar 

  5. Ben-Gad D, Gerchman Y (2017) Reclassification of Brevibacterium halotolerans DSM 8802 as Bacillus halotolerans comb. nov. based on microbial and biochemical characterization and multiple gene sequence. Curr Microbiol 74:1–5

    Article  CAS  PubMed  Google Scholar 

  6. Dunlap CA, Bowman MJ, Schisler DA et al (2016) Genome analysis shows Bacillus axarquiensis is not a later heterotypic synonym of Bacillus mojavensis; reclassification of Bacillus malacitensis and Brevibacterium halotolerans as heterotypic synonyms of Bacillus axarquiensis. Int J Syst Evol Microbiol 66:2438–2443

    Article  CAS  PubMed  Google Scholar 

  7. Li J, Yang G, Wu M et al (2014) Bacillus huizhouensis sp. nov., isolated from a paddy field soil. Antonie Van Leeuwenhoek 106:357–363

    Article  CAS  PubMed  Google Scholar 

  8. Liu B, Liu GH, Zhu YJ et al (2016) Bacillus loiseleuriae sp. nov., isolated from rhizosphere soil from a loiseleuria plant. Int J Syst Evol Microbiol 66:2678–2683

    Article  CAS  PubMed  Google Scholar 

  9. Liu B, Liu GH, Sengonca C et al (2015) Bacillus solani sp. nov., isolated from rhizosphere soil of a potato field. Int J Syst Evol Microbiol 65:4066–4071

    Article  CAS  PubMed  Google Scholar 

  10. Yoon SH, Ha SM, Kwon S et al (2017) Introducing EzBioCloud: a taxonomically united database of 16S rRNA and whole genome assemblies. Int J Syst Evol Microbiol 67:1613–1617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Thompson JD, Gibson TJ, Plewniak F et al (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  PubMed  Google Scholar 

  13. Tamura K, Nei M (1993) Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol 10:512–526

    CAS  PubMed  Google Scholar 

  14. Rzhetsky A, Nei M (1992) A simple method for estimating and testing minimum evolution trees. Mol Biol Evol 9:945–967

    CAS  Google Scholar 

  15. Kumar S, Stecher G, Tamura K (2016) MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kimura M (1980) A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120

    Article  CAS  PubMed  Google Scholar 

  17. Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791

    Article  PubMed  Google Scholar 

  18. Gregersen T (1978) Rapid method for distinction of Gram-negative from Gram-positive bacteria. Eur J Appl Microbiol Biotechnol 5:123–127

    Article  Google Scholar 

  19. Smibert RM, Krieg NR (1994) Phenotypic characterization. In: Gerhardt P, Murray RGE, Wood WA, Krieg NR (eds) Methods for general and molecular bacteriology. American Society for Microbiology, Washington, DC, pp 607–654

    Google Scholar 

  20. Murray RGE, Doetsch RN, Robinow CF (1994) Determinative and cytological light microscopy. In: Gerhardt P, Murray RGE, Wood WA, Krieg NR (eds) Methods for general and molecular bacteriology. American Society for Microbiology, Washington, DC, pp 21–41

    Google Scholar 

  21. Collins MD, Pirouz T, Goodfellow M et al (1977) Distribution of menaquinones in actinomycetes and corynebacteria. J Genet Microbiol 100:221–230

    Article  CAS  Google Scholar 

  22. Groth I, Schumann P, Weiss N et al (1996) Agrococcus jenensis gen nov., sp. nov., a new genus of actinomycetes with diaminobutyric acid in the cell wall. Int J Syst Evol Microbiol 46:234–239

    CAS  Google Scholar 

  23. Schleifer KH (1985) Analysis of the chemical composition and primary structure of murein. Method Microbiol 18:123–156

    Article  CAS  Google Scholar 

  24. Minnikin DE, Collins MD, Goodfellow M (1979) Fatty acid and polar lipid composition in the classification of Cellulomonas, Oerskovia and related taxa. J Appl Bacteriol 47:87–95

    Article  CAS  Google Scholar 

  25. Sasser M (1990) Identification of bacteria by gas chromatography of cellular fatty acids. USFCC News 20:16

    Google Scholar 

  26. Li R, Li Y, Kristiansen K et al (2008) SOAP: short oligonucleotide alignment program. Bioinformatics 24:713–714

    Article  CAS  PubMed  Google Scholar 

  27. Li R, Zhu H, Ruan J et al (2010) De novo assembly of human genomes with massively parallel short read sequencing. Genome Res 20:265–272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Seck EH, Beye M, Traore SI et al (2018) Bacillus kwashiorkori sp. nov., a new bacterial species isolated from a malnourished child using culturomics. MicrobiologyOpen 7(1):e00535

    Article  CAS  Google Scholar 

  29. Yoon SH, Ha SM, Lim JM et al (2017) A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie Van Leeuwenhoek 110:1281–1286

    Article  CAS  PubMed  Google Scholar 

  30. Meier-Kotloff JP, Auch AF, Klenk HP et al (2013) Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinform 14:60

    Article  Google Scholar 

  31. Logan NA, Berge O, Bishop AH et al (2009) Proposed minimal standards for describing new taxa of aerobic, endospore-forming bacteria. Int J Syst Evol Microbiol 59:2114–2121

    Article  CAS  PubMed  Google Scholar 

  32. Tindall BJ, Rosselló-Móra R, Busse HJ et al (2010) Notes on the characterization of prokaryote strains for taxonomic purposes. Int J Syst Evol Microbiol 60:249–266

    Article  CAS  PubMed  Google Scholar 

  33. Maughan H, Van der Auwera G (2011) Bacillus taxonomy in the genomic era finds phenotypes to be essential though often misleading. Infect Genet Evol 11:789–797

    Article  PubMed  Google Scholar 

  34. Logan NA, De Vos P (2009) Genus I. Bacillus. In: Vos P, Garrity G, Jones D, Krieg NR, Ludwig W, Rainey FA, Schleifer KH, Whitman WB (eds) Bergey’s manual of systematic bacteriology, vol 3. Springer, New York, pp 21–128

    Google Scholar 

  35. Kaneda T (1977) Fatty acids of the genus Bacillus: an example of branched-chain preference. Bacteriol Rev 41:391–418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Goris J, Konstantinidis KT, Klappenbach JA et al (2007) DNA–DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 57:81–91

    Article  CAS  PubMed  Google Scholar 

  37. Wayne LG, Brenner DJ, Colwell RR et al (1987) International Committee on Systematic Bacteriology. Report of the Ad Hoc Committee on Reconciliation of Approaches to Bacterial Systematics. Int J Syst Bacteriol 37:463–464

    Article  Google Scholar 

  38. Qin QL, Xie BB, Zhang XY et al (2014) A proposed genus boundary for the prokaryotes based on genomic insights. J Bacteriol 196:2210–2215

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Delaporte B, Sasson A (1967) Étude de bactéries des sols arides du Maroc: Brevibacterium halotolerans n. sp. et Brevibacterium frigoritolerans n. sp. C R l'Acad Sci Paris D 264:2257–2260

    CAS  Google Scholar 

  40. Bhadra B, Raghukumar C, Pindi PK et al (2008) Brevibacterium oceani sp. nov., isolated from deep-sea sediment of the Chagos Trench, Indian Ocean. Int J Syst Evol Microbiol 58:57–60

    Article  CAS  PubMed  Google Scholar 

  41. Chen P, Zhang L, Wang J et al (2016) Brevibacterium sediminis sp. nov., isolated from deep-sea sediments from the Carlsberg and Southwest Indian Ridges. Int J Syst Evol Microbiol 66:5268–5274

    Article  CAS  PubMed  Google Scholar 

  42. Trujillo ME, Goodfellow M (2012) Genus I. Brevibacterium. In: Goodfellow M, Kämpfer P, Busse HJ, Trujillo ME, Suzuki K, Ludwig W, Whitman WB (eds) Bergey’s manual of systematic bacteriology, vol 5. Springer, New York, pp 783–789

    Google Scholar 

  43. Heyrman J, Verbeeren J, Schumann P et al (2004) Brevibacterium picturae sp. nov., isolated from a damaged mural painting at the Saint-Catherine Chapel (Castle Herberstein, Austria). Int J Syst Evol Microbiol 54:1537–1541

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the External cooperative project of Fujian Academy of Agricultural Sciences (Grant No. DEC201821209), the Fujian Special Fund for Public Interest Research (Grant No. 2018R1017-1), the Natural Science Foundation of Fujian Province, China (Grant No. 2017J01048), the Youth Talent Plan of Fujian Academy of Agricultural Sciences (Grant No. YC2015-17) for the financial supporting, respectively.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guo-Hong Liu or Bo Liu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 771 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, GH., Liu, B., Wang, JP. et al. Reclassification of Brevibacterium frigoritolerans DSM 8801T as Bacillus frigoritolerans comb. nov. Based on Genome Analysis. Curr Microbiol 77, 1916–1923 (2020). https://doi.org/10.1007/s00284-020-01964-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-020-01964-x

Navigation