Skip to main content
Log in

First Insight into the Probiotic Properties of Ten Streptococcus thermophilus Strains Based on In Vitro Conditions

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

The aim of this study was to evaluate probiotic properties of ten Streptococcus thermophilus strains (st1 to st10) isolated from pickles in China. These strains all had β-galactosidase activity, which laid foundation for studying their probiotic properties. In this study, the bile salt hydrolase activity, lysozyme resistance, tolerance to simulated gastric juice, bile salt tolerance, and bacterial adhesion capacity to the Caco-2 cells of these selected strains were detected in vitro conditions. The results indicated that the bile salt hydrolase activities of st2, st6, and st9 were higher than that for other strains. St10 showed the greatest lysozyme resistance (> 80% survival), followed by st9, st8, st7, st5, and st6. As for the tolerance to simulated gastric juice, st5 possessed the highest survival rate (35%), followed by st6 (30%). St6 was the best performer in both bile salt tolerance and bacterial adhesion capacity to the Caco-2 cells. The results of fluorescence microscope and electron microscope further confirmed previous studies and more intuitively demonstrated the st6 strain's tolerance to harsh environments. Overall, these strains were expected to possess beneficial properties and have the potentiality to be probiotics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Reference

  1. De VM, Stegelmann A, Richter B, Fenselau S, Laue C, Schrezenmeir J (2001) Probiotics–compensation for lactase insufficiency. Am J Clin Nutr 73(2 Suppl):421S. https://doi.org/10.2337/dc09-1867

    Article  CAS  Google Scholar 

  2. Ouwehand AC, Salminen S, Isolauri E (2002) Probiotics: an overview of beneficial effects. Antonie Van Leeuwenhoek 82(1–4):279–289. https://doi.org/10.1023/a:1020620607611

    Article  CAS  PubMed  Google Scholar 

  3. Georgieva R, Iliev I, Haertlé T, Chobert JM, Ivanova I, Danova S (2009) Technological properties of candidate probiotic Lactobacillus plantarum strains. Int Dairy J 19(11):696–702. https://doi.org/10.1016/j.idairyj.2009.06.006

    Article  CAS  Google Scholar 

  4. Iyer R, Tomar SK, Kapila S, Mani J, Singh R (2010) Probiotic properties of folate producing Streptococcus thermophilus strains. Food Res Int 43(1):103–110. https://doi.org/10.1016/j.foodres.2009.09.011

    Article  CAS  Google Scholar 

  5. Ohland CL, Macnaughton WK (2010) Probiotic bacteria and intestinal epithelial barrier function. Am J Physiol Gastrointest Liver Physiol 298(6):807–819. https://doi.org/10.1152/ajpgi.00243.2009

    Article  CAS  Google Scholar 

  6. Lara-Hidalgo CE, Dorantes-Álvarez L, Hernández-Sánchez H, Santoyo-Tepole F, Martínez-Torres A, Villa-Tanaca L, Hernández-Rodríguez C (2018) Isolation of yeasts from guajillo pepper (Capsicum annuum L.) fermentation and study of some probiotic characteristics. Probiotics Antimicrobial Proteins 3:1–17. https://doi.org/10.1007/s12602-018-9415-x

    Article  Google Scholar 

  7. Iseppi R, Stefani S, de Niederhausern S, Bondi M, Sabia C, Messi P (2019) Characterization of anti-listeria monocytogenes properties of two bacteriocin-producing Enterococcus mundtii Isolated from fresh fish and seafood. Curr Microbiol 76(9):1010–1019. https://doi.org/10.1007/s00284-019-01716-6

    Article  CAS  PubMed  Google Scholar 

  8. Silva MS, Ramos CL, González-Avila M, Gschaedler A, Arrizon J, Schwan RF, Dias DR (2017) Probiotic properties of Weissella cibaria and Leuconostoc citreum isolated from tejuino and ash; A typical Mexican beverage. LWT Food Sci Technol 86:227–232. https://doi.org/10.1016/j.lwt.2017.08.009

    Article  CAS  Google Scholar 

  9. Yadav V, Gupta VK, Meena GS (2018) Effect of culture levels, ultrafiltered retentate addition, total solid levels and heat treatments on quality improvement of buffalo milk plain set yoghurt. J Food Sci Technol 55(4):1–8. https://doi.org/10.1007/s13197-018-3076-3

    Article  CAS  Google Scholar 

  10. Satar R, Ansari SA (2017) Functionalized agarose as an effective and novel matrix for immobilizing Cicer arietinum β-galactosidase and its application in lactose hydrolysis. Braz J Chem Eng 34(2):451–457. https://doi.org/10.1590/0104-6632.20170342s20160107

    Article  CAS  Google Scholar 

  11. Zago M, Fornasari ME, Carminati D, Burns P, Suàrez V, Vinderola G, Reinheimer J, Giraffa G (2011) Characterization and probiotic potential of Lactobacillus plantarum strains isolated from cheeses. Food Microbiol 28(5):1033–1040. https://doi.org/10.1016/j.fm.2011.02.009

    Article  CAS  PubMed  Google Scholar 

  12. Santos KMOD, Vieira ADS, Buriti FCA, Melo MESD, Bruno LM, Borges MDF, Rocha CRC, Lopes ACDS (2015) Artisanal Coalho cheeses as source of beneficial Lactobacillus plantarum and Lactobacillus rhamnosus strains. Dairy Sci Technol 95(2):209–230. https://doi.org/10.1007/s13594-014-0201-6

    Article  CAS  Google Scholar 

  13. Moser SA, Savage DC (2001) Bile salt hydrolase activity and resistance to toxicity of conjugated bile salts are unrelated properties in lactobacilli. Appl Environ Microbiol 67(8):3476–3480. https://doi.org/10.1128/AEM.67.8.3476-3480.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Shi C, Song K, Zhang X, Sun Y, Sui Y, Chen Y, Jia Z, Sun H, Sun Z, Xia X (2016) Antimicrobial activity and possible mechanism of action of citral against Cronobacter sakazakii. PLoS ONE 11(7):e0159006. https://doi.org/10.1371/journal.pone.0159006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Garcíaruiz A, González DLD, Estebanfernández A, Requena T, Bartolomé B, Morenoarribas MV (2014) Assessment of probiotic properties in lactic acid bacteria isolated from wine. Food Microbiol 44(6):220 225. https://doi.org/10.1016/j.fm.2014.06.015.

    Article  CAS  Google Scholar 

  16. Kang WL, Shim JM, Park SK, Heo HJ, Kim HJ, Ham KS, Kim JH (2016) Isolation of lactic acid bacteria with probiotic potentials from kimchi, traditional Korean fermented vegetable. LWT Food Sci Technol 71:130–137. https://doi.org/10.1016/j.lwt.2016.03.029

    Article  CAS  Google Scholar 

  17. Pilar FDP, Paloma L, Angelluis C, Carmen P, Teresa R (2008) Probiotic strains: survival under simulated gastrointestinal conditions, in vitro adhesion to Caco-2 cells and effect on cytokine secretion. Eur Food Res Technol 227(5):1475–1484. https://doi.org/10.1007/s00217-008-0870-6

    Article  CAS  Google Scholar 

  18. Liu M, Yang K, Wang J, Zhang J, Qi Y, Wei X, Fan M (2018) Young astringent persimmon tannin inhibits methicillin-resistant Staphylococcus aureus isolated from pork. LWT Food Sci Technol 100:48–55. https://doi.org/10.1016/j.lwt.2018.10.047

    Article  CAS  Google Scholar 

  19. Cárdenas N, Laiño JE, Delgado S, Jiménez E, Juárez DVM, Savoy DGG, Sesma F, Mayo B, Fernández L, Leblanc JG (2015) Relationships between the genome and some phenotypical properties of Lactobacillus fermentum CECT 5716, a probiotic strain isolated from human milk. Appl Microbiol Biotechnol 99(10):4343–4353. https://doi.org/10.1007/s00253-015-6429-0

    Article  CAS  PubMed  Google Scholar 

  20. Begley M, Hill C, Gahan CGM (2006) Bile salt hydrolase activity in probiotics. Appl Environ Microbiol 72(3):1729. https://doi.org/10.1128/AEM.72.3.1729-1738.2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hamon E, Horvatovich P, Bisch M, Bringel F, Marchioni E, Aoudéwerner D, Ennahar S (2011) Investigation of biomarkers of bile tolerance in Lactobacillus casei using comparative proteomics. J Proteome Res 11(1):109–118. https://doi.org/10.1021/pr200828t

    Article  CAS  PubMed  Google Scholar 

  22. Bustos AY, Saavedra L, de Valdez GF, Raya RR, Taranto MP (2012) Relationship between bile salt hydrolase activity, changes in the internal pH and tolerance to bile acids in lactic acid bacteria. Biotechnol Lett 34(8):1511–1518. https://doi.org/10.1007/s10529-012-0932-5

    Article  CAS  PubMed  Google Scholar 

  23. Bove P, Gallone A, Russo P, Capozzi V, Albenzio M, Spano G, Fiocco D (2012) Probiotic features of Lactobacillus plantarum mutant strains. Appl Microbiol Biotechnol 96(2):431–441. https://doi.org/10.1007/s00253-012-4031-2

    Article  CAS  PubMed  Google Scholar 

  24. Corzo G, Gilliland SE (1999) Bile salt hydrolase activity of three strains of Lactobacillus acidophilus 1. J Dairy Sci 82(3):472. https://doi.org/10.3168/jds.S0022-0302(99)75256-2

    Article  CAS  PubMed  Google Scholar 

  25. Mansouri H (2011) Asrar Z (2011) Importance of IL-10 modulation by probiotic microorganisms in gastrointestinal inflammatory diseases. ISRN Gastroenterology 2:155–170. https://doi.org/10.5402/2011/892971

    Article  CAS  Google Scholar 

  26. Castellano P, Ibarreche MP, Borges LL, Arias FCN, Ross GR, Martinis ECPD (2018) Lactobacillus spp. impair the ability of Listeria monocytogenes FBUNT to adhere to and invade Caco-2 cells. Biotechnol Lett 40(8):1237–1244. https://doi.org/10.1007/s10529-018-2572-x

    Article  CAS  PubMed  Google Scholar 

  27. Wang Z, Cui Y, Zhang Z, Wang J, Yin N (2014) Evaluation on the human bioavailability of metals using Caco-2 cell model: a review. Asian J Ecotoxicol. https://doi.org/10.7524/AJE.1673-5897-20131224001

    Article  Google Scholar 

  28. Ge Z, Nie R, Maimaiti T, Yao F, Li C (2016) Comparison of the inhibition on cellular 22-NBD-cholesterol accumulation and transportation of monomeric catechins and their corresponding A-type dimers in Caco-2 cell monolayers. J Funct Foods 27:343–351. https://doi.org/10.1016/j.jff.2016.09.018

    Article  CAS  Google Scholar 

  29. Casarotti SN, Carneiro BM, Todorov SD, Nero LA, Rahal P, Penna ALB (2017) In vitro assessment of safety and probiotic potential characteristics of Lactobacillus strains isolated from water buffalo mozzarella cheese. Ann Microbiol 67(4):289–301. https://doi.org/10.1007/s13213-017-1258-2

    Article  CAS  Google Scholar 

  30. Collado MC, Jalonen L, Meriluoto J, Salminen S (2006) Protection mechanism of probiotic combination against human pathogens: in vitro adhesion to human intestinal mucus. Asia Pac J Clin Nutr 15(4):570–575. https://doi.org/10.1016/j.appet.2005.10.003

    Article  PubMed  Google Scholar 

  31. Williams T, Christèle H, Marie-Louise N, Muriel T, Jean-Pierre G (2012) Lactobacillaceae and cell adhesion: genomic and functional screening. PLoS ONE 7(5):e38034. https://doi.org/10.1371/journal.pone.0038034

    Article  CAS  Google Scholar 

  32. Botta C, Langerholc T, Cencič A, Cocolin L (2014) In vitro selection and characterization of new probiotic candidates from table olive microbiota. PLoS ONE 9(4):e94457. https://doi.org/10.1371/journal.pone.0094457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Luo Y (2012) Identification and characterization of lactic acid bacteria from forest musk deer feces. Afr J Microbiol Res 6(29):5871–5881. https://doi.org/10.5897/AJMR12.807

    Article  Google Scholar 

  34. Fan S, Breidt F, Price R, Pérez-Díaz I (2016) Survival and growth of probiotic lactic acid bacteria in refrigerated pickle products. J Food Sci 82(1):167–173. https://doi.org/10.1111/1750-3841.13579

    Article  CAS  PubMed  Google Scholar 

  35. Schubert K, Swm OD, Von BM, Schaap FG (2017) Interactions between bile salts, gut microbiota, and hepatic innate immunity. Immunol Rev 279(1):23. https://doi.org/10.1111/imr.12579

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Ministry of Agriculture of Peoples’ Republic of China (Grant No. 201503142–10). Prof. Wu Ding of Northwest A&F University is acknowledged for providing Lactobacillus rhamnosus GG strains.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mingtao Fan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Research Involving Human and Animal Participants

This article does not contain any studies with human or animal subjects.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Liu, M., Xu, J. et al. First Insight into the Probiotic Properties of Ten Streptococcus thermophilus Strains Based on In Vitro Conditions. Curr Microbiol 77, 343–352 (2020). https://doi.org/10.1007/s00284-019-01840-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-019-01840-3

Navigation