Skip to main content

Advertisement

Log in

Genetic and Phenotypic Characteristics of a Multi-strain Probiotic for Broilers

  • Published:
Current Microbiology Aims and scope Submit manuscript

A Correction to this article was published on 02 April 2020

This article has been updated

Abstract

Bacteria isolated from different segments of the gastro-intestinal tract (GIT) of healthy free-range broilers were screened for probiotic properties. Six strains were selected and identified as Lactobacillus gallinarum, Lactobacillus johnsonii, Lactobacillus salivarius, Lactobacillus crispatus, Enterococcus faecalis and Bacillus amyloliquefaciens based on 16S rRNA, gyrB and recA gene sequence analyses. All six strains produced exopolysaccharides (EPS) and formed biofilms under conditions simulating the broiler GIT. Lactobacillus johnsonii DPN184 and L. salivarius DPN181 produced hydrogen peroxide, and L. crispatus DPN167 and E. faecalis DPN94 produced bile salt hydrolase (BSH) and phytase. Bacillus amyloliquefaciens DPN123 produced phytase, amylase, surfactin and iturin A1. No abnormalities were observed when broilers were fed the multi-strain combination, suggesting that it could be used as a probiotic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Change history

  • 02 April 2020

    The authors would like to correct the errors in the publication of the original article.

References

  1. Wei S, Morrison M, Yu Z (2013) Bacterial census of poultry intestinal microbiome. Poult Sci 92:671–683. https://doi.org/10.3382/ps.2012-02822

    Article  CAS  PubMed  Google Scholar 

  2. Pan D, Yu Z (2014) Intestinal microbiome of poultry and its interaction with host and diet. Gut Microbes 5:108–119. https://doi.org/10.4161/gmic.26945

    Article  PubMed  Google Scholar 

  3. Yan W, Sun C, Yuan J, Yang N (2017) Gut metagenomic analysis reveals prominent roles of Lactobacillus and cecal microbiota in chicken feed efficiency. Sci Rep 7:e45308. https://doi.org/10.1038/srep45308

    Article  CAS  Google Scholar 

  4. Borda-Molina D, Seifert J, Camarinha-Silva A (2018) Current perspectives of the chicken gastrointestinal tract and its microbiome. Comput Struct Biotechnol J 16:131–139. https://doi.org/10.1016/j.csbj.2018.03.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Watkins BA, Kratzer FH (1983) Effect of oral dosing of Lactobacillus strains on gut colonisation and liver biotin in broiler chicks. Poult Sci 62:2088–2094

    Article  CAS  PubMed  Google Scholar 

  6. Mead GC (1997) Bacteria in the gastrointestinal tract of birds. In: Mackie RI, White BA, Isaacson RE (eds) Gastrointestinal microbiology: gastrointestinal microbes and host interactions, vol 2. Chapman and Hall, New York, pp 216–240

    Chapter  Google Scholar 

  7. Sarra PG, Morelli L, Bottazzi V (1992) The lactic microflora of fowl. In: Wood BJB (ed) The lactic acid bacteria in health and disease, vol 1. Elsevier Applied Science, London, pp 3–19

    Google Scholar 

  8. Liong MT, Shah NP (2005) Bile salt deconjugation and BSH activity of five bifidobacterial strains and their cholesterol co-precipitating properties. Food Res Int 38:135–142. https://doi.org/10.1016/j.foodres.2004.08.003

    Article  CAS  Google Scholar 

  9. Begley M, Hill C, Gahan CGM (2006) Bile salt hydrolase activity in probiotics. Appl Environ Microbiol 72:1729–1738. https://doi.org/10.1128/AEM.72.3.1729-1738.2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Onderci M, Sahin N, Sahin K, Cikim G, Aydín A, Ozercan I, Aydín S (2006) Efficacy of supplementation of α-amylase-producing bacterial culture on the performance, nutrient use, and gut morphology of broiler chickens fed a corn-based diet. Poult Sci 85:505–510

    Article  CAS  PubMed  Google Scholar 

  11. Tang DF, Iji P, Choct M, Ru YJ (2013) Effect of α-amylase on performance and nutrient utilization of broilers fed diets based on cassava and soybean meal. In: 24th Annual Australian poultry science symposium, Sydney, 17–20 February 2013, pp 88–91

  12. Mitchell DB, Vogel K, Weimann BJ, Pasamontes L, van Loon APGM (1997) The phytase subfamily of histidine acid phosphatases: isolation of genes for two novel phytases from the fungi Aspergillus terreus and Myceliophthora thermophila. Microbiol 143:245–252. https://doi.org/10.1099/00221287-143-1-245

    Article  CAS  Google Scholar 

  13. Dalal RC (1977) Soil organic phosphorus. Adv Agron 29:83–117. https://doi.org/10.1016/S0065-2113(08)60216-3

    Article  CAS  Google Scholar 

  14. Adeola O, Cowieson AJ (2011) Board-invited review: opportunities and challenges in using exogenous enzymes to improve nonruminant animal production. J Anim Sci 89:3189–3218. https://doi.org/10.2527/jas.2010-3715

    Article  CAS  PubMed  Google Scholar 

  15. Graf E, Eaton JW (1990) Antioxidant functions of phytic acid. Free Radic Biol Med 8:61–69. https://doi.org/10.1016/0891-5849(90)90146-A

    Article  CAS  PubMed  Google Scholar 

  16. Selle PH, Ravindran V, Bryden WL, Scott T (2006) Influence of dietary phytate and exogenous phytase on amino acid digestibility in poultry: a review. J Poult Sci 43:89–103. https://doi.org/10.2141/jpsa.43.89

    Article  CAS  Google Scholar 

  17. Kabir SML (2009) The role of probiotics in the poultry industry. Int J Mol Sci 10:3531–3546. https://doi.org/10.3390/ijms10083531

    Article  CAS  Google Scholar 

  18. Van Immerseel F, De Buck J, Pasmans F, Huyghebaert G, Haesebrouck F, Ducatelle R (2004) Clostridium perfringens in poultry: an emerging threat for animal and public health. Avian Pathol 33:537–549. https://doi.org/10.1080/03079450400013162

    Article  PubMed  Google Scholar 

  19. Kaldhusdal M, Løvland A (2000) The economical impact of Clostridium perfringens is greater than anticipated. World Poult 16:50–51

    Google Scholar 

  20. Hofacre CL, Beacorn T, Collett S, Mathis G (2003) Using competitive exclusion, mannan-oligosaccharide and other intestinal products to control necrotic enteritis. J Appl Poult Res 12:60–64. https://doi.org/10.1093/japr/12.1.60

    Article  Google Scholar 

  21. Hook D, Jalaludin B, Fitzsimmons G (1996) Clostridium perfringens food-borne-outbreak: an epidemiological investigation. Aust N Z J Public Health 20:119–122

    Article  CAS  PubMed  Google Scholar 

  22. Skarp CPA, Hänninen M-L, Rautelin HIK (2016) Campylobacteriosis: the role of poultry meat. Clin Microbiol Infect 22:103–109. https://doi.org/10.1016/j.cmi.2015.11.019

    Article  CAS  PubMed  Google Scholar 

  23. Awad WA, Hess C, Hess M (2017) Enteric pathogens and their toxin-induced disruption of the intestinal barrier through alteration of tight junctions in chickens. Toxins 9:e60. https://doi.org/10.3390/toxins9020060

    Article  PubMed  Google Scholar 

  24. Ibrahim RA, Cryer TL, Lafi SQ, Basha E-A, Good L, Tarazi YH (2019) Identification of Escherichia coli from broiler chickens in Jordan, their antimicrobial resistance, gene characterization and the associated risk factors. Vet Res 15:1–16. https://doi.org/10.1186/s12917-019-1901-1

    Article  CAS  Google Scholar 

  25. Morley AJ, Thomson DK (1984) Swollen-head syndrome in broiler chickens. Avian Dis. 28:238–243

    Article  CAS  PubMed  Google Scholar 

  26. Randall CJ, Meakins PA, Harris MP, Watt DJ (1984) A new skin disease in broilers? Vet Rec 114:246

    Article  CAS  PubMed  Google Scholar 

  27. Sterzo EV, Paiva JB, Mesquita AL, Freitas Neto OC, Berchieri S (2007) Organic acids and/or compound with defined microorganisms to control Salmonella enterica serovar Enteritidis experimental infection in chickens. Rev Bras Cienc Avic 9:69–73. https://doi.org/10.1590/S1516-635X2007000100010

    Article  Google Scholar 

  28. Ghareeb K, Awad WA, Mohnl M, Porta R, Biarnés M, Böhm J, Schatzmayr G (2012) Evaluating the efficacy of an avian-specific probiotic to reduce the colonisation of Campylobacter jejuni in broiler chickens. Poult Sci 91:1825–1832. https://doi.org/10.3382/ps.2012-02168

    Article  CAS  PubMed  Google Scholar 

  29. Lourenco MC, Kuritza LN, Westphal P, Muniz E, Pickler L, Santin E (2012) Effects of Bacillus subtilis in the dynamics of infiltration of immunological cells in the intestinal mucosa of chickens challenged with Salmonella Minnesota. Int J Poult Sci 11:630–634. https://doi.org/10.3923/ijps.2012.630.634

    Article  CAS  Google Scholar 

  30. Abudabos AM, Alyemni AH, Al Marshad MBA (2013) Bacillus subtilis PB6 based probiotic (CloSTAT™) improves intestinal morphological and microbiological status of broiler chickens under Clostridium perfringens challenge. Int J Agri Biol 15:978–982

    Google Scholar 

  31. Gutierrez-Fuentes CG, Zuñiga-Orozco LA, Vicente JL, Hernandez-Velasco X, Menconi A, Kuttappan VA, Kallapura G, Latorre J, Layton S, Hargis BM, Téllez G (2013) Effect of a lactic acid bacteria based probiotic, Floramax-B11®, on performance, bone qualities, and morphometric analysis of broiler chickens: an economic analysis. Biol Syst 2:113. https://doi.org/10.4172/2329-6577.1000113

    Article  Google Scholar 

  32. Prado-Rebolledo OF, de Jesus D-M, Macedo-Barragan RJ, Garcia-Márquez LJ, Morales-Barrera JE, Latorre JD, Hernandez-Velasco X, Tellez G (2017) Evaluation of a selected lactic acid bacteria-based probiotic on Salmonella enterica serovar Enteritidis colonisation and intestinal permeability in broiler chickens. Avian Pathol 46:90–94. https://doi.org/10.1080/03079457.2016.1222808

    Article  PubMed  Google Scholar 

  33. Tille PM, Forbes BA (2014) Bailey & Scott’s diagnostic microbiology, 13th edn. Elsevier, St. Louis

    Google Scholar 

  34. Neveling DP, Endo A, Dicks LMT (2012) Fructophilic Lactobacillus kunkeei and Lactobacillus brevis isolated from fresh flowers, bees and bee-hive. Curr Microbiol 65:507–515. https://doi.org/10.1007/s00284-012-0186-4

    Article  CAS  PubMed  Google Scholar 

  35. Müller HE (1984) ABTS peroxidase medium as a highly sensitive plate assay for detection of hydrogen peroxide production in bacteria. J Microbiol Meth 2:101–102. https://doi.org/10.1016/0167-7012(84)90035-6

    Article  Google Scholar 

  36. Rabe LK, Hillier SL (2003) Optimization of media for detection of hydrogen peroxide production by Lactobacillus species. J Clin Microbiol 41:3260–3264. https://doi.org/10.1128/JCM.41.7.3260-3264.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Sarmiento-Rubiano L, Berger B, Moine D, Zúñiga M, Pérez-Martínez G, Yebra MJ (2010) Characterization of a novel Lactobacillus species closely related to Lactobacillus johnsonii using a combination of molecular and comparative genomics methods. BMC Genomics 11:504. https://doi.org/10.1186/1471-2164-11-504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729. https://doi.org/10.1093/molbev/mst197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Saitou N, Nei M (1987) The neighbour-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425. https://doi.org/10.1093/oxfordjournals.molbev.a040454

    Article  CAS  PubMed  Google Scholar 

  40. Cavalli-Sforza LL, Edwards AWF (1967) Phylogenetic analysis models and estimation procedures. Am J Hum Genet 19:233–257

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Kluge AG, Farris JS (1969) Quantitative phyletics and the evolution of the anurans. Syst Zool 18:1–32

    Article  Google Scholar 

  42. Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791. https://doi.org/10.2307/2408678

    Article  PubMed  Google Scholar 

  43. Van Staden AD (2015) In vitro and in vivo characterization of amyloliquecidin, a novel two-component lantibiotic produced by Bacillus amyloliquefaciens. PhD Microbiology, Stellenbosch University, Stellenbosch, South Africa

  44. Ndlovu T, Rautenbach M, Vosloo JA, Khan S, Khan W (2017) Characterisation and antimicrobial activity of biosurfactant extracts produced by Bacillus amyloliquefaciens and Pseudomonas aeruginosa isolated from a wastewater treatment plant. AMB Express 7:108

    Article  PubMed  PubMed Central  Google Scholar 

  45. Bae HD, Yanke LJ, Cheng KJ, Selinger LB (1999) A novel staining method for detecting phytase activity. J Microbiol Methods 39:17–22. https://doi.org/10.1016/S0167-7012(99)00096-2

    Article  CAS  PubMed  Google Scholar 

  46. Askelson TE, Campasino A, Lee JT, Duong T (2014) Evaluation of phytate-degrading Lactobacillus culture administration to broiler chickens. Appl Environ Microbiol 80:943–950. https://doi.org/10.1128/AEM.03155-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Tungala A, Narayanan KA, Muthuraman MS (2013) Isolation of phytase producing bacteria from poultry faeces and optimization of culture conditions for enhanced phytase production. Int J Pharm Pharm Sci 5:264–269

    Google Scholar 

  48. Deb P, Talukdar SA, Mohsina K, Sarker PK, Sayen SMA (2013) Production and partial characterization of extracellular amylase enzyme from Bacillus amyloliquefaciens P-001. SpringerPlus 2:1–12. https://doi.org/10.1186/2193-1801-2-154

    Article  CAS  Google Scholar 

  49. Kaur A, Kaur M, Samyal ML, Ahmed Z (2012) Isolation, characterization and identification of bacterial strain producing amylase. J Microbiol Biotechnol Res 2:573–579

    CAS  Google Scholar 

  50. Franz CMAP, Specht I, Haberer P, Holzapfel WH (2001) Bile salt hydrolase activity of enterococci isolated from food: screening and quantitative determination. J Food Prot 64:725–729. https://doi.org/10.4315/0362-028X-64.5.725

    Article  CAS  PubMed  Google Scholar 

  51. Stingele F, Neeser JR, Mollet B (1996) Identification and characterization of the eps (exopolysaccharide) gene cluster from Streptococcus thermophilus Sfi6. J Bacteriol 178:1680–1690

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Del Re B, Sgorbati B, Miglioli M, Palenzona D (2000) Adhesion, autoaggregation and hydrophobicity of 13 strains of Bifidobacterium longum. Lett Appl Microbiol 31:438–442. https://doi.org/10.1046/j.1365-2672.2000.00845.x

    Article  PubMed  Google Scholar 

  53. Bellon-Fontaine MN, Rault J, van Oss CJ (1996) Microbial adhesion to solvents: a novel method to determine the electron-donor/electron-acceptor or Lewis acid-base properties of microbial cells. Colloids Surf B Biointerfaces 7(1–2):47–53. https://doi.org/10.1016/09277765(96)01272-6

    Article  CAS  Google Scholar 

  54. CLSI (2015) Performance standards for antimicrobial susceptibility testing: twenty-four informational supplement. CLSI Document M100-S24

  55. FEEDAP: EFSA Panel on Additives and Products or Substances used in Animal Feed (2012) Guidance on the assessment of bacterial susceptibility to antimicrobials of human and veterinary importance. EFSA J 10:2740. https://doi.org/10.2903/j.efsa.2012.2740

  56. EUCAST: The European Committee on Antimicrobial Susceptibility Testing (2018) Breakpoint tables for interpretation of MICs and zone diameters, version 8.0. https://www.eucast.org

  57. Dahiya RS, Speck ML (1968) Hydrogen peroxide formation by lactobacilli and its effect on Staphylococcus aureus. J Dairy Sci 51:1568–1572. https://doi.org/10.3168/jds.S0022-0302(68)87232-7

    Article  CAS  PubMed  Google Scholar 

  58. Watson JA, Schubert J (1969) Action of hydrogen peroxide on growth inhibition of Salmonella typhimurium. J Gen Microbiol 57:25–34. https://doi.org/10.1099/00221287-57-1-25

    Article  CAS  PubMed  Google Scholar 

  59. Siragusa GR, Johnson MG (1989) Inhibition of Listeria monocytogenes growth by the lactoperoxidase-thiocyanate-H2O2 antimicrobial system. Appl Environ Microbiol 55:2802–2805

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Riley WW, Austic RE (1984) Influence of dietary electrolytes on digestive tract pH and acid-base status of chicks. Poult Sci 63:2247–2251

    Article  CAS  PubMed  Google Scholar 

  61. Mahagna M, Nir I, Larbier M, Nitsan Z (1995) Effect of age and exogenous amylase and protease on development of the digestive tract, pancreatic enzyme activities and digestibility of nutrients in young meat-type chicks. Reprod Nutr Dev 35:201–212

    Article  CAS  PubMed  Google Scholar 

  62. Shires A, Thompson JR, Turner BV, Kennedy PM, Goh YK (1987) Rate of passage of canola meal and corn-soybean meal diets through the gastrointestinal tract of broiler and white leghorn chickens. Poult Sci 66:289–298

    Article  CAS  PubMed  Google Scholar 

  63. Dänicke S, Vahjen W, Simon O, Jeroch H (1999) Effects of dietary fat type and xylanase supplementation to rye-based broiler diets on selected bacterial groups adhering to the intestinal epithelium, on transit time of feed, and on nutrient digestibility. Poult Sci 78:1292–1299

    Article  PubMed  Google Scholar 

  64. Svihus B (2014) Function of the digestive system. J Appl Poult Res 23:306–314. https://doi.org/10.3382/japr.2014-00937

    Article  CAS  Google Scholar 

  65. Lin J, Sahin O, Michel LO, Zhang Q (2003) Critical role of multidrug efflux pump CmeABC in bile resistance and in vivo colonisation of Campylobacter jejuni. Infect Immun 71:4250–4259. https://doi.org/10.1128/IAI.71.8.4250-4259.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Noy Y, Sklan D (1995) Digestion and absorption in the young chick. Poult Sci 74:366–373. https://doi.org/10.3382/ps.0740366

    Article  CAS  PubMed  Google Scholar 

  67. Rougière N, Carré B (2010) Comparison of gastrointestinal transit times between chickens from D+ and D− genetic lines selected for divergent digestion efficiency. Animal 4:1861–1872. https://doi.org/10.1017/S1751731110001266

    Article  PubMed  Google Scholar 

  68. Weurding RE, Veldman A, Veen WAG, van der Aar PJ, Verstegen MWA (2001) Starch digestion rate in the small intestine of broiler chickens differs among feedstuffs. J Nutr 131:2329–2335

    Article  CAS  PubMed  Google Scholar 

  69. Wee Y, Kimm J, Ryu H (2006) Biotechnological production of lactic acid and its recent applications. Food Technol Biotechnol 44:163–172

    CAS  Google Scholar 

  70. Yu GY, Sinclair JB, Hartman GL, Bertagnolli BL (2002) Production of iturin A by Bacillus amyloliquefaciens suppressing Rhizoctonia solani. Soil Biol Biochem 34:955–963. https://doi.org/10.1016/S0038-0717(02)00027-5

    Article  CAS  Google Scholar 

  71. Sun L, Lu Z, Bie X, Lu F, Yang S (2006) Isolation and characterization of a co-producer of fengycins and surfactins, endophytic Bacillus amyloliquefaciens ES-2, from Scutellaria baicalensis Georgi. World J Microbiol Biotechnol 22:1259–1266. https://doi.org/10.1007/s11274-006-9170-0

    Article  CAS  Google Scholar 

  72. Alvarez F, Castro M, Príncipe A, Borioli G, Fischer S, Mori G, Jofré E (2011) The plant-associated Bacillus amyloliquefaciens strains MEP218 and ARP23 capable of producing the cyclic lipopeptides iturin or surfactin and fengycin are effective in biocontrol of sclerotinia stem rot disease. J Appl Microbiol 112:159–174. https://doi.org/10.1111/j.1365-2672.2011.05182.x

    Article  CAS  PubMed  Google Scholar 

  73. FAO/WHO Joint Working Group Report on drafting guidelines for the evaluation of probiotics in food, Canada, London, ON (April 30 and May 1, 2002). https://www.who.int/foodsafety/fs_management/en/probiotic_guidelines.pdf

  74. Francesch M, Geraert PA (2009) Enzyme complex containing carbohydrases and phytase improves growth performance and bone mineralisation of broilers fed reduced nutrient corn–soybean-based diets. Poult Sci 88:1915–1924. https://doi.org/10.3382/ps.2009-00073

    Article  CAS  PubMed  Google Scholar 

  75. Cowieson AJ, Adeola O (2005) Carbohydrases, protease, and phytase have an additive beneficial effect in nutritionally marginal diets for broiler chicks. Poult Sci 84:1860–1867

    Article  CAS  PubMed  Google Scholar 

  76. Selle PH, Ravindran V, Ravindran G, Bryden WL (2007) Effects of dietary lysine and microbial phytase on growth performance and nutrient utilisation of broiler chickens. Asian Australas J Anim Sci 20:1100–1107. https://doi.org/10.5713/ajas.2007.1100

    Article  CAS  Google Scholar 

  77. De Angelis M, Gallo G, Corbo MR, McSweeney PLH, Faccia M, Giovine M, Gobbetti M (2003) Phytase activity in sourdough lactic acid bacteria: purification and characterization of a phytase from Lactobacillus sanfranciscensis CB1. Int J Food Microbiol 87:259–270. https://doi.org/10.1016/S0168-1605(03)00072-2

    Article  CAS  PubMed  Google Scholar 

  78. Palacios MC, Haros M, Rosell CM, Sanz Y (2005) Characterization of an acid phosphatase from Lactobacillus pentosus: regulation and biochemical properties. J Appl Microbiol 98:229–237. https://doi.org/10.1111/j.1365-2672.2004.02447.x

    Article  CAS  PubMed  Google Scholar 

  79. Idriss EE, Makarewicz O, Farouk A, Rosner K, Greiner R, Bochow H, Richter T, Borriss R (2002) Extracellular phytase activity of Bacillus amyloliquefaciens FZB45 contributes to its plant-growth-promoting effect. Microbiology 148:2097–2109. https://doi.org/10.1099/00221287-148-7-2097

    Article  CAS  PubMed  Google Scholar 

  80. Boukhris I, Farhat-Khemakhem A, Blibech M, Bouchaala K, Chouayekh H (2015) Characterization of an extremely salt-tolerant and thermostable phytase from Bacillus amyloliquefaciens US573. Int J Biol Macromol 80:581–587. https://doi.org/10.1016/j.ijbiomac.2015.07.014

    Article  CAS  PubMed  Google Scholar 

  81. Mosser SA, Savage DC (2001) Bile salt hydrolase activity and resistance to toxicity of conjugated bile salts are unrelated properties in Lactobacilli. Appl Environ Microbiol 67:3476–3480. https://doi.org/10.1128/AEM.67.8.3476-3480.2001

    Article  Google Scholar 

  82. Chand D, Ramasamy S, Suresh CG (2016) A highly active bile salt hydrolase from Enterococcus faecalis shows positive cooperative kinetics. Process Biochem 51:263–269. https://doi.org/10.1016/j.procbio.2015.12.006

    Article  CAS  Google Scholar 

  83. Sridevi N, Vishwe P, Prabhune A (2009) Hypocholesteremic effect of bile salt hydrolase from Lactobacillus buchneri ATCC 4005. Food Res Int 42:516–520. https://doi.org/10.1016/j.foodres.2009.02.016

    Article  CAS  Google Scholar 

  84. Saha K, Maity S, Roy S, Pahan K, Pathak R, Majumdar S, Gupta S (2014) Optimization of amylase production from B. amyloliquefaciens (MTCC 1270) using solid state fermentation. Int J Microbiol 2014:764046. https://doi.org/10.1155/2014/764046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Herasimenka Y, Cescutti P, Impallomeni G, Rizzo R (2007) Exopolysaccharides produced by Inquilinus limosus, a new pathogen of cystic fibrosis patients: novel structures with usual components. Carbohydr Res 342:2404–2415. https://doi.org/10.1016/j.carres.2007.07.012

    Article  CAS  PubMed  Google Scholar 

  86. Yadav V, Prappulla SG, Jha A, Poonia A (2011) A novel exopolysaccharide from probiotic Lactobacillus fermentum CFR 2195: Production, purification and characterization. Biotechnol Bioinf Bioeng 1:415–421

    Google Scholar 

  87. Vinderola G, Perdigón G, Duarte J, Famworth E, Matar C (2006) Effects of the oral administration of the exopolysaccharide produced by Lactobacillus kefiranofaciens on the gut mucosal immunity. Cytokine 36:254–260. https://doi.org/10.1016/j.cyto.2007.01.003

    Article  CAS  PubMed  Google Scholar 

  88. Maalouf K, Baydoun E, Rizk S (2011) Kefir induces cell-cycle and apoptosis in HTLV-1-negative malignant T-lymphocytes. Cancer Manag Res 3:39–47. https://doi.org/10.2147/CMR.S15109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Madhuri KV, Prabhakar KV (2014) Microbial exopolysaccharides: biosynthesis and potential applications. Orient J Chem 30:1401–1410. https://doi.org/10.13005/ojc/300362

    Article  CAS  Google Scholar 

  90. Grandy G, Medina M, Soria R, Terán CG, Araya M (2010) Probiotics in the treatment of acute rotavirus diarrhoea. A randomized, double-blind, controlled trial using two different probiotic preparations in Bolivian children. BMC Infect Dis 10:253. https://doi.org/10.1186/1471-2334-10-2531

    Article  Google Scholar 

  91. Wu MH, Pan TM, Wu YJ, Chang SJ, Chang MS, Hu CY (2010) Exopolysaccharide activities from probiotic bifidobacterium: Immunomodulatory effects (on J774A.1 macrophages) and antimicrobial properties. Int J Food Microbiol 144:104–110. https://doi.org/10.1016/j.ijfoodmicro.2010.09.003

    Article  CAS  PubMed  Google Scholar 

  92. Bleau C, Monges A, Rashidan K, Laverdure JP, Lacroix M, Van Calsteren MR, Millette M, Savard R, Lamontagne L (2010) Intermediate chains of exopolysaccharides from Lactobacillus rhamnosus RW-9595M increase IL-10 production by macrophages. J Appl Microbiol 108:666–675. https://doi.org/10.1111/j.1365-2672.2009.04450.x

    Article  CAS  PubMed  Google Scholar 

  93. Lebeer S, Ceuppens J, Geboes K, Van Assche G, Rutgeerts P, Vanderleyden J, De Keersmaecker S (2007) Mechanisms of probiotic–host interaction with IBD as a case study: a role for exopolysaccharides? Commun Agric Appl Biol Sci 72:41–45

    CAS  PubMed  Google Scholar 

  94. Harutoshi T (2013) Exopolysaccharides of lactic acid bacteria for food and colon health applications. In: Kongo M (ed) Biochemistry, genetics and molecular biology: lactic acid bacteria: R&D for food, health and livestock purposes. InTech, Rijeka, pp 222–238

    Google Scholar 

  95. Wang Y, Li C, Liu P, Ahmed Z, Xiao P, Bai X (2010) Physical characterization of exopolysaccharide produced by Lactobacillus plantarum KF5 isolated from Tibet Kefir. Carbohydr Polym 82:895–903. https://doi.org/10.1016/j.carbpol.2010.06.013

    Article  CAS  Google Scholar 

  96. Singh RP, Shukla MK, Mishra A, Kumari P, Reddy CPK, Jha B (2011) Isolation and characterization of exopolysaccharides from seaweed associated bacteria Bacillus licheniformis. Carbohydr Polym 84:1019–1026. https://doi.org/10.1016/j.carbpol.2010.12.061

    Article  CAS  Google Scholar 

  97. Sekkal M, Legrand P (1993) A spectroscopic investigation of the carrageenans and agar in the 1500–100 cm-1 spectral range. Spectrochim Acta 49:209–221. https://doi.org/10.1016/0584-8539(93)80176-B

    Article  Google Scholar 

  98. Tao F, Biao GZ, Yu JZ, Ning ZH (2008) Isolation and characterization of an acidic polysaccharide from Mesona Blumes gum. Carbohydr Polym 71:159–169. https://doi.org/10.1016/j.carbpol.2007.05.017

    Article  CAS  Google Scholar 

  99. Donnarumma G, Molinaro A, Cimini D, De Castro C, Valli V, De Gregorio V, De Rosa M, Schiraldi C (2014) Lactobacillus crispatus L1: high cell density cultivation and exopolysaccharide structure characterization to highlight potentially beneficial effects against vaginal pathogens. BMC Microbiol 14:137. https://doi.org/10.1186/1471-2180-14-137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Dertli E, Mayer MJ, Colguhoun IJ, Narbad A (2016) EpsA is an essential gene in exopolysaccharide production Lactobacillus johnsonii FI9785. Microb Biotechnol 9:496–501. https://doi.org/10.1111/1751-7915.12314

    Article  CAS  PubMed  Google Scholar 

  101. Sanhueza E, Paredes-Osses E, González CL, García GA (2015) Effect of pH in the survival of Lactobacillus salivarius strain UCO_979C wild type and the pH acid acclimated variant. Electron J Biotechnol 18:343–346. https://doi.org/10.1016/j.ejbt.2015.06.005

    Article  CAS  Google Scholar 

  102. Venkatesh P, Balraj M, Ayyanna R, Ankaiah D, Arul V (2016) Physicochemical and biosorption properties of novel exopolysaccharides produced by Enterococcus faecalis. LWT Food Sci Technol 68:606–614. https://doi.org/10.1016/j.lwt.2016.01.005

    Article  CAS  Google Scholar 

  103. Malick A, Khodaei N, Benkerroum N, Karboune S (2017) Production of exopolysaccharides by selected Bacillus strains: optimization of media composition to maximize the yield and structural characterization. Int J Macromol 102:539–549. https://doi.org/10.1016/j.ijbiomac.2017.03

    Article  CAS  Google Scholar 

  104. Rosenberg M (2006) Microbial adhesion to hydrocarbons: twenty-five years of doing MATH. FEMS Microbiol Lett 262:129–134

    Article  CAS  PubMed  Google Scholar 

  105. Klopper KB, Deane SM, Dicks LMT (2018) Aciduric strains of Lactobacillus reuteri and Lactobacillus rhamnosus, isolated from human feces, have strong adhesion and aggregation properties. Prob Antimicrob Prot 10:89–97

    Article  CAS  Google Scholar 

  106. Kleerebezem M, Hols P, Bernard E, Rolain T, Zhou M, Siezen RJ et al (2010) The extracellular biology of the lactobacilli. FEMS Microbiol Rev 34:199–230

    Article  CAS  PubMed  Google Scholar 

  107. Bron PA, Tomita S, van Swam II, Remus DM, Meijerink M, Wels M, Okada S et al (2012) Lactobacillus plantarum possesses the capability for wall teichoic acid backbone alditol switching. Microb Cell Factories 11:123

    Article  CAS  Google Scholar 

  108. Lee YK, Salminen S (2009) Handbook of probiotics and prebiotics, 1st edn. Wiley, Hoboken

    Google Scholar 

  109. MacKenzie DA, Jeffers F, Parker ML, Vibert-Vallet A, Bongaerts RJ, Roos S et al (2010) Strain-specific diversity of mucus-binding proteins in the adhesion and aggregation properties of Lactobacillus reuteri. Microbiology 156:3368–3378

    Article  CAS  PubMed  Google Scholar 

  110. De Vuyst L, Foulquié-Moreno MR, Revets H (2003) Screening for enterocins and detection of hemolysin and vancomycin resistance in enterococci of different origins. Int J Food Microbiol 84:299–318. https://doi.org/10.1016/S0168-1605(02)00425-7

    Article  CAS  PubMed  Google Scholar 

  111. Hummel AS, Hertel C, Holzapfel WH, Franz CMAP (2007) Antibiotic resistances of starter and probiotic strains of lactic acid bacteria. Appl Environ Microbiol 73:730–739. https://doi.org/10.1128/AEM.02105-06

    Article  CAS  PubMed  Google Scholar 

  112. Ammor MS, Flórez AB, van Hoek AH, de los Reyes-Gavilán CG, Aarts HJ, Margolles A, Mayo B (2008) Molecular characterization of intrinsic and acquired antibiotic resistance in lactic acid bacteria and bifidobacteria. J Mol Microbiol Biotechnol 14:6–15. https://doi.org/10.1159/000106077

    Article  CAS  PubMed  Google Scholar 

  113. Sharma P, Tomar SK, Sangwan V, Goswami P, Singh R (2015) Antibiotic resistance of Lactobacillus sp. isolated from commercial probiotic preparations. J Food Saf 36:38–51. https://doi.org/10.1111/jfs.12211

    Article  CAS  Google Scholar 

  114. Charteris WP, Kelly PM, Morelli L, Collins JK (2001) Gradient diffusion antibiotic susceptibility testing of potentially probiotic lactobacilli. J Food Prot 64:2007–2014

    Article  CAS  PubMed  Google Scholar 

  115. Ammor MS, Florez AB, Mayo B (2007) Antibiotic resistance in non-enterococcal lactic acid bacteria and bifidobacteria. Food Microbiol 24:559–570. https://doi.org/10.1016/j.fm.2006.11.001

    Article  CAS  PubMed  Google Scholar 

  116. Gueimonde M, Sánchez B, de los Reyes-Gavilán CG, Margolles A (2013) Antibiotic resistance in probiotic bacteria. Front Microbiol 4:202. https://doi.org/10.3389/fmicb.2013.00202

    Article  PubMed  PubMed Central  Google Scholar 

  117. Lahtinen SJ, Boyle RJ, Margolles A, Frías R, Gueimonde M (2009) Safety assessment of probiotics. In: Rastall RA, Charalampopoulos D (eds) Prebiotics and probiotics science and technology. Springer, Berlin, pp 1193–1225

    Chapter  Google Scholar 

  118. Ammor MS, Gueimonde M, Danielsen M, Zagorec M, van Hoek AHAM, de los Reyes-Gavilán CG, Mayo B, Margolles A (2008) Two different tetracycline resistance mechanisms, plasmid-carried tet(L) and chromosomally located transposon-associated tet(M), coexist in Lactobacillus sakei Rits 9. Appl Environ Microbiol 74:1394–1401. https://doi.org/10.1128/AEM.01463-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Klare I, Konstabel C, Werner G, Huys G, Vankerckhoven V, Kahlmeter G, Hildebrandt B, Müller-Bertling S, Witte W, Goossens H (2007) Antimicrobial susceptibilities of Lactobacillus, Pediococcus and Lactococcus human isolates and cultures intended for probiotic or nutritional use. J Antimicrob Chemother 59:900–912. https://doi.org/10.1093/jac/dkm035

    Article  CAS  PubMed  Google Scholar 

  120. van Hoek AHAM, Margolles A, Damig KJ, Korhonen JM, Źycka-Krzesińka J, Bardowsky JK, Danielsen M, Huys G, Morelli L, Aarts HJM (2008) Molecular assessment of erythromycin and tetracycline resistance genes in lactic acid bacteria and bifidobacteria and their relation to the phenotypic resistance. Int J Probiotics Prebiotics 3:3271–3280

    Google Scholar 

  121. Gad GFM, Abdel-Hamid AM, Farag ZSH (2014) Antibiotic resistance in lactic acid bacteria isolated from some pharmaceutical and dairy products. Braz J Microbiol 45:25–33. https://doi.org/10.1590/S1517-83822014000100005

    Article  PubMed  PubMed Central  Google Scholar 

  122. Chenoweth CE, Robinson KA, Schaberg DR (1990) Efficacy of ampicillin versus trimethoprim-sulfamethoxazole in a mouse model of lethal enterococcal peritonitis. Antimicrob Agents Chemother 34:1800–1802. https://doi.org/10.1128/AAC.34.9.1800

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Brogden RN, Carmine AA, Heel RC, Speight TM, Avery GS (1982) Trimethoprim: a review of its antibacterial activity, pharmacokinetics and therapeutic use in urinary tract infections. Drugs 23:405–430. https://doi.org/10.2165/00003495-198223060-00001

    Article  CAS  PubMed  Google Scholar 

  124. Bushby SR, Hitchings GH (1968) Trimethoprim, a sulphonamide potentiator. Br J Pharmacol Chemother 33:72–90. https://doi.org/10.1111/j.1476-5381.1968.tb00475.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Hollenbeck BL, Rice LB (2012) Intrinsic and acquired resistance mechanisms in enterococcus. Virulence 3:421–433. https://doi.org/10.4161/viru.21282

    Article  PubMed  PubMed Central  Google Scholar 

  126. Huys G, D’Haene K, Collard J, Swings J (2004) Prevalence and molecular characterization of tetracycline resistance in Enterococcus isolates from food. Appl Environ Microbiol 70:1555–1562. https://doi.org/10.1128/AEM.70.3.1555-1562.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Leavis HL, Willems RJL, Top J, Bonten MJM (2006) High-level ciprofloxacin resistance from point mutations in gyrA and parC confined to global hospital-adapted clonal lineage CC17 of Enterococcus faecium. J Clin Microbiol 44:1059–1064. https://doi.org/10.1128/JCM.44.3.1059-1064.2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Phelan RW, Clarke C, Morrissey JP, Dobson ADW, O’Gara F, Barbosa TM (2011) Tetracycline resistance-encoding plasmid from Bacillus sp. strain #24, isolated from the marine sponge Haliclona simulans. Appl Environ Microbiol 77:327–329. https://doi.org/10.1128/AEM.01239-10

    Article  CAS  PubMed  Google Scholar 

  129. Roberts AP, Pratten J, Wilson M, Mullany P (1999) Transfer of a conjugative transposon, Tn5397 in a model oral biofilm. FEMS Microbiol Lett 177:63–66. https://doi.org/10.1111/j.1574-6968.1999.tb13714.x

    Article  CAS  PubMed  Google Scholar 

  130. Neela FA, Nonaka L, Rahman MH, Suzuki S (2009) Transfer of the chromosomally encoded tetracycline resistance gene tet(M) from marine bacteria to Escherichia coli and Enterococcus faecalis. World J Microbiol Biotechnol 25:1095–1101. https://doi.org/10.1007/s11274-009-0004-8

    Article  CAS  Google Scholar 

  131. Creti R, Imperi M, Bertuccini L, Fabretti F, Orefici G, Di Rosa R, Baldassarri L (2004) Survey for virulence determinants among Enterococcus faecalis isolated from different sources. J Med Microbiol 53:13–20. https://doi.org/10.1099/jmm.0.05353-0

    Article  CAS  PubMed  Google Scholar 

  132. Martín-Platero AM, Valdivia E, Maqueda M, Martínez-Bueno M (2009) Characterization and safety evaluation of enterococci isolated from Spanish goats’ milk cheeses. Int J Food Microbiol 132:24–32. https://doi.org/10.1016/j.ijfoodmicro.2009.03.010

    Article  CAS  PubMed  Google Scholar 

  133. Pillar CM, Gilmore MS (2004) Enterococcal virulence-pathogenicity islands of E. faecalis. Front Biosci 9:2335–2346. https://doi.org/10.2741/1400

    Article  CAS  PubMed  Google Scholar 

  134. Clewell DB (2011) Tales of conjugation and sex pheromones. Mob Genet Elements 1:38–54. https://doi.org/10.4161/mge.1.1.15409

    Article  PubMed  PubMed Central  Google Scholar 

  135. Clewell DB, An FY, Flannagan SE, Antiporta M, Dunny GM (2000) Enterococcal sex pheromone precursors are part of signal sequences for surface lipoproteins. Mol Microbiol 35:246–247. https://doi.org/10.1046/j.1365-2958.2000.01687.x

    Article  CAS  PubMed  Google Scholar 

  136. Lowe AM, Lambert PA, Smith AW (1995) Cloning of an Enterococcus faecalis endocarditis antigen: homology with adhesins from some oral streptococci. Infect Immun 63:703–706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. An FY, Clewell DB (2002) Identification of the cAD1 sex pheromone precursor in Enterococcus faecalis. J Bacteriol 184:1880–1887. https://doi.org/10.1128/JB.184.7.1880-1887.2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Lebreton F, Riboulet-Bisson E, Serror P, Sanguinete M, Posteraro B, Torelli R, Hartke A, Auffray Y, Giard J (2009) Ace, which encodes an adhesin in Enterococcus faecalis, is regulated by Ers and is involved in virulence. Infect Immun 77:2832–2839. https://doi.org/10.1128/IAI.01218-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Michaux C, Sanguinetti M, Reffuveille F, Auffray Y, Posteraro B, Gilmore MS, Hartke A, Giard J (2011) SlyA is a transcriptional regulator involved in the virulence of Enterococcus faecalis. Infect Immun 79:2638–2645. https://doi.org/10.1128/IAI.01132-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Michaux C, Martini C, Hanin A, Auffray Y, Hartke A, Giard JC (2011) SlyA regulator is involved in bile salts stress response of Enterococcus faecalis. FEMS Microbiol Lett 324:142–146. https://doi.org/10.1111/j.1574-6968.2011.02390.x

    Article  CAS  PubMed  Google Scholar 

  141. Medeiros AW, Pereira RI, Oliveira DV, Martins PD, d’Azevedo PA, Van der Sand S, Frazzon J, Frazzon APG (2014) Molecular detection of virulence factors among food and clinical Enterococcus faecalis strains in South Brazil. Braz J Microbiol 45:327–332. https://doi.org/10.1590/S1517-83822014005000031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Creti R, Fabretti F, Koch S, Huebner J, Garsin DA, Baldassarri L, Montanaro L, Arciola CR (2009) Surface protein EF3314 contributes to virulence properties of Enterococcus faecalis. Int J Artif Organs 32:611–620

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Galli D, Lottspeich F, Wirth R (1990) Sequence analysis of Enterococcus faecalis aggregation substance encoded by the sex pheromone plasmid pAD1. Mol Microbiol 4:895–904. https://doi.org/10.1111/j.1365-2958.1990.tb00662.x

    Article  CAS  PubMed  Google Scholar 

  144. Trivedi K, Cupakova S, Kappiskova R (2011) Virulence factors and antibiotic resistance in enterococci isolated from food-stuffs. Vet Med (Praha) 56:352–357

    Article  CAS  Google Scholar 

  145. Cariolato D, Andrighetto C, Lombardi A (2008) Occurrence of virulence factors and antibiotic resistance in Enterococcus faecalis and Enterococcus faecium collected from dairy and human samples in North Italy. Food Control 19:886–892. https://doi.org/10.1016/j.foodcont.2007.08.019

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leon M. T. Dicks.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file 1 (DOCX 1083 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Neveling, D.P., Ahire, J.J., Laubscher, W. et al. Genetic and Phenotypic Characteristics of a Multi-strain Probiotic for Broilers. Curr Microbiol 77, 369–387 (2020). https://doi.org/10.1007/s00284-019-01797-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-019-01797-3

Navigation