Skip to main content
Log in

Characterization and Complete Genome Analysis of the Carbazomycin B-Producing Strain Streptomyces luteoverticillatus SZJ61

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Members of marine Actinobacteria have been highly regarded as potentially important sources of antimicrobial compounds. Here, we isolated a strain of Actinobacteria, SZJ61, and showed that it inhibits the in vitro growth of fungi pathogenic to plants. This new isolate was identified as Streptomyces luteoverticillatus by morphological, biochemical and genetic analyses. Antifungal compounds were isolated from S. luteoverticillatus strain SZJ61 and characterized as carbazomycin B by nuclear magnetic resonance spectra. We then sequenced the genome of the S. luteoverticillatus SZJ61 strain, which consists of only one 7,367,863 bp linear chromosome that has a G+C content of 72.05%. Thirty-five putative biosynthetic gene clusters for secondary metabolites, including a variety of bioactive products, were found. Mining of the genome sequence information revealed the putative biosynthetic gene cluster of carbazomycin B. This genomic information is valuable for interpreting the biosynthetic mechanisms of diverse bioactive compounds that have potential applications in the pharmaceutical industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Hwang KS et al (2014) Systems biology and biotechnology of streptomyces species for the production of secondary metabolites. Biotechnol Adv 32(2):255–268

    Article  CAS  PubMed  Google Scholar 

  2. Baltz RH (2008) Renaissance in antibacterial discovery from actinomycetes. Curr Opin Pharmacol 8(5):557–563

    Article  CAS  PubMed  Google Scholar 

  3. Dhakal D et al (2018) Complete genome sequence of, streptomyces peucetius, atcc 27952, the producer of anticancer anthracyclines and diverse secondary metabolites. J Biotechnol 267:50–54

    Article  CAS  PubMed  Google Scholar 

  4. Yu Y et al (2018) Identification of the streptothricin and tunicamycin biosynthetic gene clusters by genome mining in streptomyces sp. strain fd1-xmd. Appl Microbiol Biotechnol 102(6):2621–2633

    Article  CAS  PubMed  Google Scholar 

  5. Kaneda M et al (1990) Biosynthesis of carbazomycin B. II. Origin of the whole carbon skeleton. J Antibiot 43(12):1623–1626

    Article  CAS  Google Scholar 

  6. Yamasaki K et al (1983) New antibiotics, carbazomycins A and B III. Taxonomy and biosynthesis. J Antibiot 36(5):552–558

    Article  CAS  Google Scholar 

  7. Knolker HJ, Frohner W (1989) Improved total syntheses of the antibiotic alkaloids carbazomycin A and B. Neuroscience 28(3):735–744

    Article  Google Scholar 

  8. Markad SB, Argade NP (2014) Diversity oriented convergent access for collective total synthesis of bioactive multifunctional carbazole alkaloids: synthesis of carbazomycin A, carbazomycin B, hyellazole, chlorohyellazole, and clausenaline D. Org Lett 16(20):5470–5473

    Article  CAS  PubMed  Google Scholar 

  9. Kato S et al (1993) In vitro and ex vivo free radical scavenging activities of carazostatin, carbazomycin B and their derivatives. J Antibiot 46(12):1859–1865

    Article  CAS  Google Scholar 

  10. Managamuri U et al (2017) Isolation, identification, optimization, and metabolite profiling of streptomyces sparsus vsm-30. 3 Biotech 7(3):217

    Article  PubMed  PubMed Central  Google Scholar 

  11. Meng X et al (2017) Characterization and complete genome sequence of a novel siphoviridae bacteriophage BS5. Curr Microbiol 74(7):815–820

    Article  CAS  PubMed  Google Scholar 

  12. Grady EN et al (2019) Characterization and complete genome analysis of the surfactin-producing, plant-protecting bacterium bacillus velezensis 9d-6. BMC Microbiol 19(1):5

    Article  PubMed  PubMed Central  Google Scholar 

  13. Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Krishnan P et al (2004) Characterisation of germinating and non-germinating wheat seeds by nuclear magnetic resonance (nmr) spectroscopy. Eur Biophys J 33(1):76–82

    Article  CAS  PubMed  Google Scholar 

  15. Koren S et al (2012) Hybrid error correction and de novo assembly of single-molecule sequencing reads. Nat Biotechnol 30(7):693–700

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Chin CS et al (2013) Nonhybrid, finished microbial genome assemblies from long-read SMRT sequencing data. Nat Methods 10(6):563–569

    Article  CAS  PubMed  Google Scholar 

  17. McKenna A et al (2010) The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res 20(9):1297–1303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Rhoads A, Au KF (2015) PacBio Sequencing and Its Applications. Genom Proteom Bioinform 13(5):278–289

    Article  Google Scholar 

  19. Weber T et al (2015) antiSMASH 3.0-a comprehensive resource for the genome mining of biosynthetic gene clusters. Nucleic Acids Res 43:W237–W243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Sakano KI, Nakamura S (1980) New antibiotics, carbazomycins A and B II. Structural elucidation. J Antibiot 33(9):961–966

    Article  CAS  Google Scholar 

  21. Orihara N, Furihata K, Seto H (1997) Studies on the biosynthesis of terpenoidal compounds produced by actinomycetes. 2. Biosynthesis of carquinostatin B via the non-mevalonate pathway in Streptomyces exfoliatus. J Antibiot 50(11):979–981

    Article  CAS  Google Scholar 

  22. Huang S et al (2015) Biosynthesis of neocarazostatin A reveals the sequential carbazole prenylation and hydroxylation in the tailoring steps. Chem Biol 22(12):1633–1642

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Key R&D Program of China (Grant No. 2017YFD0501800), the Innovation Team Project for Modern Agricultural Industrious Technology System of Shandong Province (Grant No. SDAIT-11-10), Major Scientific and Technological Innovation Project of Shandong Province (Grant No. 2017GGH5129), and Yantai Science and Technology Project (Grant No. 2017NC049).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xingxiao Zhang.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare.

Research Involving Human and Animals Participants

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

284_2019_1711_MOESM1_ESM.tif

Supplementary material 1—Antagonistic effect of S. luteoverticillatus SZJ61on the growth of plant pathogenic fungi. Aspergillus niger (A) and Fusarium oxysporum (B). (TIFF 226 kb)

Supplementary material 2—Morphological characters of S. luteoverticillatus SZJ61. Scale bar, 10μm. (TIFF 529 kb)

Supplementary material 3—1H NMR spectrum of the antifungal compound (400 MHz, CDCl3). (PDF 36 kb)

Supplementary material 4—13C NMR spectrum of the antifungal compound (400 MHz, CDCl3). (PDF 34 kb)

Supplementary material 5—Chemical structures of neocarazostatin A and carbazomycin B. (TIFF 356 kb)

Supplementary material 6—Secondary metabolite clusters in S. luteoverticillatus SZJ61. (DOCX 16 kb)

Supplementary material 7—Coding genes of acyl carrier protein of S. luteoverticillatus SZJ61. (DOCX 15 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, Z., Chen, G., Zhang, J. et al. Characterization and Complete Genome Analysis of the Carbazomycin B-Producing Strain Streptomyces luteoverticillatus SZJ61. Curr Microbiol 76, 982–987 (2019). https://doi.org/10.1007/s00284-019-01711-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-019-01711-x

Navigation