Skip to main content

Advertisement

Log in

Diversity of Dimethylsulfoniopropionate Degradation Genes Reveals the Significance of Marine Roseobacter Clade in Sulfur Metabolism in Coastal Areas of Antarctic Maxwell Bay

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Dimethylsulfoniopropionate (DMSP) is an organic sulfur compound that occurs in large amounts in oceans around the world, and it plays an important role in the global sulfur cycle. DMSP released into seawater can be rapidly catabolized by bacteria via two pathways, namely, demethylation or cleavage pathway. Members of the Roseobacter clade frequently possess enzymes involved in the DMSP demethylation or cleavage pathway. We tried to measure the diversity of genes encoding DMSP demethylase (dmdA) and DMSP lyases (dddD, dddL, and dddP) in bacteria in the surface seawater of Ardley Cove and Great Wall Cove in Antarctic Maxwell Bay using DMSP degradation gene clone library analysis. Although we did not detect sequences related to the dddD or dddL gene, both bacterial dmdA and dddP genes found in the two coves were completely confined to the Roseobacter clade, which indicated that this clade plays a significant role in DMSP catabolism in the coastal seawaters of Maxwell Bay. In addition, compared with bacterial DMSP degradation genes in Arctic coastal seawater, our results suggest that both bipolar and endemic bacterial DMSP degradation genes exist in polar marine environments. The findings of this study improve our knowledge of the distribution of DMSP degradation genes in polar marine ecosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Bano N, Hollibaugh JT (2000) Diversity and distribution of DNA sequences with affinity to ammonia-oxidizing bacteria of the β subdivision of the class Proteobacteria in the Arctic Ocean. Appl Environ Microbiol 66(5):1960–1969

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Boden R, Hutt LP (2019) Aerobic bacterial catabolism of dimethylsulfoniopropionate. In: Rojo F (ed) Aerobic utilization of hydrocarbons, oils and lipids. Handbook of hydrocarbon and lipid microbiology, Springer, Cham, pp 1–27

    Google Scholar 

  3. Bosshard PP, Santini Y, Grüter DG, Stettler R, Bachofen R (2000) Bacterial diversity and community composition in the chemocline of the meromictic alpine lake Cadagno as revealed by 16S rRNA gene analysis. FEMS Microbiol Ecol 31(2):173–182

    Article  CAS  PubMed  Google Scholar 

  4. Buchan A, Gonzalez JM, Moran MA (2005) Overview of the marine Roseobacter lineage. Appl Environ Microbiol 71(10):5665–5677

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Bullock HA, Luo H, Whitman WB (2017) Evolution of dimethylsulfoniopropionate metabolism in marine phytoplankton and bacteria. Front Microbiol 8:637

    PubMed  PubMed Central  Google Scholar 

  6. Bullock HA, Reisch CR, Burns AS, Moran MA, Whitman WB (2014) Regulatory and functional diversity of methylmercaptopropionate coenzyme A ligases from the dimethylsulfoniopropionate demethylation pathway in Ruegeria pomeroyi DSS-3 and other proteobacteria. J Bacteriol 196(6):1275–1285

    Article  PubMed  PubMed Central  Google Scholar 

  7. Charlson RJ, Lovelock JE, Andreae MO, Warren SG (1987) Oceanic phytoplankton, atmospheric sulphur, cloud albedo and climate. Nature 326:655–661

    Article  CAS  Google Scholar 

  8. Curson AR, Rogers R, Todd JD, Brearley CA, Johnston AW (2008) Molecular genetic analysis of a dimethylsulfoniopropionate lyase that liberates the climate-changing gas dimethylsulfide in several marine α-proteobacteria and Rhodobacter sphaeroides. Environ Microbiol 10(3):757–767

    Article  CAS  PubMed  Google Scholar 

  9. Curson AR, Todd JD, Sullivan MJ, Johnston AW (2011) Catabolism of dimethylsulphoniopropionate: microorganisms, enzymes and genes. Nat Rev Microbiol 9(12):849–859

    Article  CAS  PubMed  Google Scholar 

  10. Damm E, Kiene RP, Schwarz J, Falck E, Dieckmann G (2008) Methane cycling in Arctic shelf water and its relationship with phytoplankton biomass and DMSP. Mar Chem 109(1):45–59

    Article  CAS  Google Scholar 

  11. Gao S, Jin H, Zhuang Y, Ji Z, Tian S, Zhang J et al (2015) Seawater nutrient and chlorophyll α distributions near the Great Wall Station, Antarctica. Adv Polar Sci 26(1):63–70

    Google Scholar 

  12. González JM, Kiene RP, Moran MA (1999) Transformation of sulfur compounds by an abundant lineage of marine bacteria in the alpha-subclass of the class Proteobacteria. Appl Environ Microbiol 65(9):3810–3819

    PubMed  PubMed Central  Google Scholar 

  13. González JM, Simó R, Massana R, Covert JS, Casamayor EO, Pedrós-Alió C et al (2000) Bacterial community structure associated with a dimethylsulfoniopropionate-producing North Atlantic algal bloom. Appl Environ Microbiol 66(10):4237–4246

    Article  PubMed  PubMed Central  Google Scholar 

  14. Huovinen P, Ramírez J, Gómez I (2016) Underwater optics in sub-Antarctic and Antarctic coastal ecosystems. PLoS ONE 11(5):e0154887

    Article  PubMed  PubMed Central  Google Scholar 

  15. Johnston AWB, Green RT, Todd JD (2016) Enzymatic breakage of dimethylsulfoniopropionate—a signature molecule for life at sea. Curr Opin Chem Biol 31:58–65

    Article  CAS  PubMed  Google Scholar 

  16. Keller M, Bellows W, Guillard R (1989) Dimethyl sulfide production in marine phytoplankton. Biog Sulfur Environ 393:167–182

    Article  CAS  Google Scholar 

  17. Khim BK, Il Yoon Ho (2003) Postglacial marine environmental changes in Maxwell Bay, King George Island, west Antarctica. Polar Res 22(2):341–353

    Article  Google Scholar 

  18. Kiene RP, Kieber DJ, Slezak D, Toole DA, del Valle DA, Bisgrove J et al (2007) Distribution and cycling of dimethylsulfide, dimethylsulfoniopropionate, and dimethylsulfoxide during spring and early summer in the Southern Ocean south of New Zealand. Aquat Sci 69(3):305–319

    Article  CAS  Google Scholar 

  19. Kiene RP, Linn LJ (2000) The fate of dissolved dimethylsulfoniopropionate (DMSP) in seawater: tracer studies using 35S-DMSP. Geochim Cosmochim Ac 64(16):2797–2810

    Article  CAS  Google Scholar 

  20. Kiene RP, Linn LJ, Bruton JA (2000) New and important roles for DMSP in marine microbial communities. J Sea Res 43(3–4):209–224

    Article  CAS  Google Scholar 

  21. Kiene RP, Linn LJ, González J, Moran MA, Bruton JA (1999) Dimethylsulfoniopropionate and methanethiol are important precursors of methionine and protein-sulfur in marine bacterioplankton. Appl Environ Microbiol 65(10):4549–4558

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Kiene RP, Slezak D (2006) Low dissolved DMSP concentrations in seawater revealed by small-volume gravity filtration and dialysis sampling. Limnol Oceanogr Methods 4(4):80–95

    Article  CAS  Google Scholar 

  23. Ledyard KM, Dacey JW, Dacey J (1996) Microbial cycling of DMSP and DMS in coastal and oligotrophic seawater. Limnol Oceanogr 41(1):33–40

    Article  CAS  Google Scholar 

  24. Lei L, Cherukuri KP, Alcolombri U, Meltzer D, Tawfik DS (2018) The dimethylsulfoniopropionate (DMSP) lyase and lyase-like cupin family consists of Bona Fide DMSP lyases as well as other enzymes with unknown function. Biochemistry 57(24):3364–3377

    Article  CAS  PubMed  Google Scholar 

  25. Luce M, Levasseur M, Scarratt MG, Michaud S, Royer S-J, Kiene R et al (2011) Distribution and microbial metabolism of dimethylsulfoniopropionate and dimethylsulfide during the 2007 Arctic ice minimum. J Geophys Res-Oceans 116:C00G06

    Article  Google Scholar 

  26. Luo W, Li H, Gao S, Yu Y, Lin L, Zeng Y (2016) Molecular diversity of microbial eukaryotes in sea water from Fildes Peninsula, King George Island, Antarctica. Polar Biol 39(4):605–616

    Article  Google Scholar 

  27. Motard-Côté J, Levasseur M, Scarratt MG, Michaud S, Gratton Y, Rivkin RB et al (2012) Distribution and metabolism of dimethylsulfoniopropionate (DMSP) and phylogenetic affiliation of DMSP assimilating bacteria in northern Baffin Bay/Lancaster Sound. J Geophys Res-Oceans 117:C00G11

    Article  Google Scholar 

  28. Pedrós-Alió C (2006) Marine microbial diversity: can it be determined? Trends Microbiol 14(6):257–263

    Article  PubMed  Google Scholar 

  29. Peng M, Xie Q, Hu H, Hong K, Todd JD, Johnston AW et al (2012) Phylogenetic diversity of the dddP gene for dimethylsulfoniopropionate-dependent dimethyl sulfde synthesis in mangrove soils. Can J Microbiol 58(4):523–530

    Article  CAS  PubMed  Google Scholar 

  30. Quinn PK, Bates TS (2011) The case against climate regulation via oceanic phytoplankton sulphur emissions. Nature 480(7375):51–56

    Article  CAS  PubMed  Google Scholar 

  31. Raina JB, Tapiolas D, Willis BL, Bourne DG (2009) Coral-associated bacteria and their role in the biogeochemical cycling of sulfur. Appl Environ Microbiol 75(11):3492–3501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Reisch CR, Moran MA, Whitman WB (2008) Dimethylsulfoniopropionate-dependent demethylase (DmdA) from Pelagibacter ubique and Silicibacter pomeroyi. J Bacteriol 190(24):8018–8024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Riemann L, Steward GF, Azam F (2000) Dynamics of bacterial community composition and activity during a mesocosm diatom bloom. Appl Environ Microbiol 66(2):578–587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Royer S-J, Levasseur M, Lizotte M, Arychuk M, Scarratt MG, Wong CS et al (2010) Microbial dimethylsulfoniopropionate (DMSP) dynamics along a natural iron gradient in the northeast subarctic Pacific. Limnol Oceanogr 55(4):1614–1626

    Article  CAS  Google Scholar 

  35. Rusch DB, Halpern AL, Sutton G, Heidelberg KB, Williamson S, Yooseph S et al (2007) The Sorcerer II global ocean sampling expedition: Northwest Atlantic through Eastern Tropical Pacific. PLoS Biol 5:e77

    Article  PubMed  PubMed Central  Google Scholar 

  36. Schnicker NJ, De Silva SM, Todd JD, Dey M (2017) Structural and biochemical insights into dimethylsulfoniopropionate cleavage by cofactor-bound DddK from the prolific marine bacterium Pelagibacter. Biochemistry 56(23):2873–2885

    Article  CAS  PubMed  Google Scholar 

  37. Sun J, Todd JD, Thrash JC, Qian Y, Qian MC, Temperton B et al (2016) The abundant marine bacterium Pelagibacter simultaneously catabolizes dimethylsulfoniopropionate to the gases dimethyl sulfide and methanethiol. Nat Microbiol 1(8):16065

    Article  CAS  PubMed  Google Scholar 

  38. Svendsen H, Beszczynska-Møller A, Hagen JO, Lefauconnier B, Tverberg V, Gerland S et al (2002) The physical environment of Kongsfjorden-Krossfjorden, an Arctic fjord system in Svalbard. Polar Res 21(1):133–166

    Google Scholar 

  39. Tian S, Jin H, Gao S, Zhuang Y, Zhang Y, Wang B et al (2015) Sources and distribution of particulate organic carbon in Great Wall Cove and Ardley Cove, King George Island, West Antarctica. Adv Polar Sci 26(1):55–62

    Google Scholar 

  40. Todd JD, Rogers R, Li YG, Wexler M, Bond PL, Sun L et al (2007) Structural and regulatory genes required to make the gas dimethyl sulfide in bacteria. Science 315(5812):666–669

    Article  CAS  PubMed  Google Scholar 

  41. Wagner-Döbler I, Biebl H (2006) Environmental biology of the marine Roseobacter lineage. Annu Rev Microbiol 60:255–280

    Article  PubMed  Google Scholar 

  42. Zeng YX, Qiao ZY, Yu Y, Li HR, Luo W (2016) Diversity of bacterial dimethylsulfoniopropionate degradation genes in surface seawater of Arctic Kongsfjorden. Sci Rep 6:33031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Zeng YX, Yu Y, Qiao ZY, Jin HY, Li HR (2014) Diversity of bacterioplankton in coastal seawaters of Fildes Peninsula, King George Island, Antarctica. Arch Microbiol 196(2):137–147

    Article  CAS  PubMed  Google Scholar 

  44. Zeng YX, Zhang F, He JF, Lee SH, Qiao ZY, Yu Y et al (2013) Bacterioplankton community structure in the Arctic waters as revealed by pyrosequencing of 16S rRNA genes. Antonie Van Leeuwenhoek 103(6):1309–1319

    Article  PubMed  Google Scholar 

  45. Zhang Y, Sun Y, Jiao N, Stepanauskas R, Luo H (2016) Ecological genomics of the uncultivated marine Roseobacter lineage CHAB-I-5. Appl Environ Microbiol 82(7):2100–2111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Zubkov MV, Fuchs BM, Archer SD, Kiene RP, Amann R, Burkill PH (2002) Rapid turnover of dissolved DMS and DMSP by defined bacterioplankton communities in the stratified euphotic zone of the North Sea. Deep-Sea Res II 49(15):3017–3038

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key R&D Program of China (Grant No. 2018YFC1406903) and the National Natural Science Foundation of China (Grant No. 41476171). We appreciate the assistance of the Chinese Arctic and Antarctic Administration (CAA) who organized the 28th Chinese National Antarctic Research Expedition in 2011.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yin-Xin Zeng.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeng, YX., Qiao, ZY. Diversity of Dimethylsulfoniopropionate Degradation Genes Reveals the Significance of Marine Roseobacter Clade in Sulfur Metabolism in Coastal Areas of Antarctic Maxwell Bay. Curr Microbiol 76, 967–974 (2019). https://doi.org/10.1007/s00284-019-01709-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-019-01709-5

Navigation