Skip to main content
Log in

A Transcriptomic Analysis of Saccharomyces cerevisiae Under the Stress of 2-Phenylethanol

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

2-Phenylethanol (2-PE) is a kind of advanced aromatic alcohol with rose fragrance, which is wildly used for the deployment of flavors and fragrances. Microbial transformation is the most feasible method for the production of natural 2-PE. But a bottleneck problem is the toxicity of 2-PE on the cells. The molecular mechanisms of the toxic effect of 2-PE to Saccharomyces cerevisiae are not well studied. In this study, we analyzed the transcriptomes of S. cerevisiae in the media with and without 2-PE, respectively, using Illumina RNA-Seq technology. We identified 580 differentially expressed genes between S. cerevisiae in two different treatments. GO and KEGG enrichment analyses of these genes suggested that most genes encoding mitochondrial proteins, cytoplasmic, and plasma membrane proteins were significantly up-regulated, whereas the enzymes related to amino acid metabolism were down-regulated. These results indicated that 2-PE suppressed the synthesis of plasma membrane proteins, which suppressed the transport of nutrients required for growth. The findings in this study will provide insight into the inhibitory mechanism of 2-PE to yeast and other microbes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Albertazzi E, Cardillo R, Servi S, Zucchi G (1994) Biogeneration of 2-phenylethanol and 2-phenylethylacetate important aroma components. Biotechnol Lett 16:491–496

    Article  CAS  Google Scholar 

  2. Bauer MF, Hofmann S, Neupert W, Brunner M (2000) Protein translocation into mitochondria: the role of TIM complexes. Trends Cell Biol 10:25–31

    Article  CAS  Google Scholar 

  3. Boer VM, Tai SL, Vuralhan Z, Arifin Y, Walsh MC, Piper MD, de Winde JH, Pronk JT, Daran JM (2007) Transcriptional responses of Saccharomyces cerevisiae to preferred and nonpreferred nitrogen sources in glucose-limited chemostat cultures. FEMS Yeast Res 7:604–620

    Article  CAS  Google Scholar 

  4. Brush GS, Najor NA, Dombkowski AA, Cukovic D, Sawarynski KE (2012) Yeast IME2 functions early in meiosis upstream of cell cycle-regulated SBF and MBF targets. PLoS ONE 7:e31575

    Article  CAS  Google Scholar 

  5. Chung HJ, Lee SL, Chou CC (2000) Production and molar yield of 2-phenylethanol by Pichia fermentans L-5 as affected by some medium components. J Biosci Bioeng 90:142–147

    Article  Google Scholar 

  6. Desai N, Brown A, Amunts A, Ramakrishnan V (2017) The structure of the yeast mitochondrial ribosome. Science 355:528–531

    Article  CAS  Google Scholar 

  7. Eshkol N, Sendovski M, Bahalul M, Katz-Ezov T, Kashi Y, Fishman A (2009) Production of 2-phenylethanol from L-phenylalanine by a stress tolerant Saccharomyces cerevisiae strain. J Appl Microbiol 106:534–542

    Article  CAS  Google Scholar 

  8. Florea L, Song L, Salzberg SL (2013) Thousands of exon skipping events differentiate among splicing patterns in sixteen human tissues. F1000Research 2:188

    Article  Google Scholar 

  9. Godard P, Urrestarazu A, Vissers S, Kontos K, Bontempi G, van Helden J, Andre B (2007) Effect of 21 different nitrogen sources on global gene expression in the yeast Saccharomyces cerevisiae. Mol Cell Biol 27:3065–3086

    Article  CAS  Google Scholar 

  10. Hazelwood LA, Daran JM, van Maris AJ, Pronk JT, Dickinson JR (2008) The Ehrlich pathway for fusel alcohol production: a century of research on Saccharomyces cerevisiae metabolism. Appl Environ Microbiol 74:2259–2266

    Article  CAS  Google Scholar 

  11. Herrmann JM, Woellhaf MW, Bonnefoy N (2013) Control of protein synthesis in yeast mitochondria: the concept of translational activators. Biochim Biophys Acta 1833:286–294

    Article  CAS  Google Scholar 

  12. Hirschberg J, Simchen G (1977) Commitment to the mitotic cell cycle in yeast in relation to meiosis. Exp Cell Res 105:245–252

    Article  CAS  Google Scholar 

  13. Honigberg SM, Purnapatre K (2003) Signal pathway integration in the switch from the mitotic cell cycle to meiosis in yeast. J Cell Sci 11:2137–2147

    Article  Google Scholar 

  14. Hurtado S, Kim GK, Sontheimer EJ (2014) SPO24 is a transcriptionally dynamic, small ORF-encoding locus required for efficient sporulation in Saccharomyces cerevisiae. PLoS ONE 9:e105058

    Article  Google Scholar 

  15. Iraqui I, Vissers S, Andre B, Urrestarazu A (1999) Transcriptional induction by aromatic amino acids in Saccharomyces cerevisiae. Mol Cell Biol 19:3360–3371

    Article  CAS  Google Scholar 

  16. Jambhekar A, Amon A (2008) Control of meiosis by respiration. Curr Biol 18:969–975

    Article  CAS  Google Scholar 

  17. Kim B, Cho BR, Hahn JS (2014) Metabolic engineering of Saccharomyces cerevisiae for the production of 2-phenylethanol via Ehrlich pathway. Biotechnol Bioeng 111:115–124

    Article  CAS  Google Scholar 

  18. Kim D, Pertea G, Trapnell C, Pimentel H, Kelley R, Salzberg SL (2013) TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol 14:R36

    Article  Google Scholar 

  19. Kuszak AJ, Jacobs D, Gurnev PA, Shiota T, Louis JM, Lithgow T, Bezrukov SM, Rostovtseva TK, Buchanan SK (2015) Evidence of distinct channel conformations and substrate binding affinities for the mitochondrial outer membrane protein translocase pore Tom40. J Biol Chem 290:26204–26217

    Article  CAS  Google Scholar 

  20. Liu P, Cheng Y, Yang M, Liu Y, Chen K, Long CA, Deng X (2014) Mechanisms of action for 2-phenylethanol isolated from Kloeckera apiculata in control of Penicillium molds of citrus fruits. BMC Microbiol 14:242

    Article  Google Scholar 

  21. Magasanik B (2003) Ammonia assimilation by Saccharomyces cerevisiae. Eukaryot Cell 2:827–829

    Article  CAS  Google Scholar 

  22. Marini AM, Vissers S, Urrestarazu A, Andre B (1994) Cloning and expression of the MEP1 gene encoding an ammonium transporter in Saccharomyces cerevisiae. EMBO J 13:3456–3463

    Article  CAS  Google Scholar 

  23. Neupert W (1997) Protein import into mitochondria. Annu Rev Biochem 66:863–917

    Article  CAS  Google Scholar 

  24. Piekarska I, Rytka J, Rempola B (2010) Regulation of sporulation in the yeast Saccharomyces cerevisiae. Acta Biochim Pol 57:241–250

    CAS  PubMed  Google Scholar 

  25. Pierce M, Benjamin KR, Montano SP, Georgiadis MM, Winter E, Vershon AK (2003) Sum1 and Ndt80 proteins compete for binding to middle sporulation element sequences that control meiotic gene expression. Mol Cell Biol 23:4814–4825

    Article  CAS  Google Scholar 

  26. Popa CV, Dumitru I, Ruta LL, Danet AF, Farcasanu IC (2010) Exogenous oxidative stress induces Ca2+ release in the yeast Saccharomyces cerevisiae. FEBS J 277:4027–4038

    Article  CAS  Google Scholar 

  27. Reichert AS, Neupert W (2002) Contact sites between the outer and inner membrane of mitochondria-role in protein transport. Biochim Biophys Acta 1592:41–49

    Article  CAS  Google Scholar 

  28. Roy M, Reddy PH, Iijima M, Sesaki H (2015) Mitochondrial division and fusion in metabolism. Curr Opin Cell Biol 33:111–118

    Article  CAS  Google Scholar 

  29. Schuller HJ (2003) Transcriptional control of nonfermentative metabolism in the yeast Saccharomyces cerevisiae. Curr Genet 43:139–160

    Article  Google Scholar 

  30. Sendovski M, Nir N, Fishman A (2010) Bioproduction of 2-phenylethanol in a biphasic ionic liquid aqueous system. J Agric Food Chem 58:2260–2265

    Article  CAS  Google Scholar 

  31. Serp D, von Stockar U, Marison IW (2003) Enhancement of 2-phenylethanol productivity by Saccharomyces cerevisiae in two-phase fed-batch fermentations using solvent immobilization. Biotechnol Bioeng 82:103–110

    Article  CAS  Google Scholar 

  32. Smith HE, Driscoll SE, Sia RA, Yuan HE, Mitchell AP (1993) Genetic evidence for transcriptional activation by the yeast IME1 gene product. Genetics 133:775–784

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Sokol AM, Sztolsztener ME, Wasilewski M, Heinz E, Chacinska A (2014) Mitochondrial protein translocases for survival and wellbeing. FEBS Lett 588:2484–2495

    Article  CAS  Google Scholar 

  34. Stark D, Munch T, Sonnleitner B, Marison IW, von Stockar U (2002) Extractive bioconversion of 2-phenylethanol from L-phenylalanine by Saccharomyces cerevisiae. Biotechnol Prog 18:514–523

    Article  CAS  Google Scholar 

  35. Stark D, Zala D, Münch T, Sonnleitner B, Marison IW, Stockar U (2003) Inhibition aspects of the bioconversion of L-phenylalanine to 2-phenylethanol by Saccharomyces cerevisiae. Enzyme Microb Technol 32:113–212

    Article  Google Scholar 

  36. Van der Rest ME, Kamminga AH, Nakano A, Anraku Y, Poolman B, Konings WN (1995) The plasma membrane of Saccharomyces cerevisiae: structure, function, and biogenesis. Microbiol Rev 59:304–322

    Article  CAS  Google Scholar 

  37. Walther K, Schuller HJ (2001) Adr1 and Cat8 synergistically activate the glucose-regulated alcohol dehydrogenase gene ADH2 of the yeast Saccharomyces cerevisiae. Microbiology 147:2037–2044

    Article  CAS  Google Scholar 

  38. Wang Z, Bai X, Guo X, He X (2017) Regulation of crucial enzymes and transcription factors on 2-phenylethanol biosynthesis via Ehrlich pathway in Saccharomyces cerevisiae. J Ind Microbiol Biotechnol 44:129–139

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by the Science and Technology Project of Jiangxi Academy of Sciences (2017-YZD2-05, 2014-YYB-09, 2014-XTPH1-09).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Danfeng Jin or Jun Xiao.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (ZIP 47 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jin, D., Gu, B., Xiong, D. et al. A Transcriptomic Analysis of Saccharomyces cerevisiae Under the Stress of 2-Phenylethanol. Curr Microbiol 75, 1068–1076 (2018). https://doi.org/10.1007/s00284-018-1488-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-018-1488-y

Navigation