Skip to main content
Log in

Bioprospecting of Novel and Bioactive Compounds from Marine Actinomycetes Isolated from South China Sea Sediments

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Marine actinomycetes are less investigated compared to terrestrial strains as potential sources of natural products. To date, few investigations have been performed on culturable actinomycetes associated with South China Sea sediments. In the present study, twenty-eight actinomycetes were recovered from South China Sea sediments after dereplication by traditional culture-dependent method. The 16S rRNA gene sequences analyses revealed that these strains related to five families and seven genera. Twelve representative strains possessed at least one of the biosynthetic genes coding for polyketide synthase I, II, and nonribosomal peptide synthetase. Four strains had anti-Mycobacterium phlei activities and five strains had activities against methicillin-resistant Staphylococcus aureus. 10 L-scale fermentation of strains Salinispora sp. NHF45, Nocardiopsis sp. NHF48, and Streptomyces sp. NHF86 were carried out for novel and bioactive compounds discovery. Finally, we obtained a novel α-pyrone compound from marine Nocardiopsis sp. NHF48, an analogue of paulomenol from marine Streptomyces sp. NHF86 and a new source of rifamycin B, produced by Salinispora sp. NHF45. The present study concluded that marine actinomycetes, which we isolated from South China Sea sediments, will be a suitable source for the development of novel and bioactive compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Argoudelis AD, Baczynskyj L, Haak WJ, Knoll WM, Mizsak SA, Shilliday FB (1988) New paulomycins produced by Streptomyces paulus. J Antibiot 41:157–169

    Article  CAS  PubMed  Google Scholar 

  2. Argoudelis AD, Baczynskyj L, Mizsak SA, Shilliday FB (1988) O-demethylpaulomycin-A and O-demethylpaulomycin-B, U-77,802 and U-77,803, paulomenol-A and paulomenol-B, new metabolites produced by Streptomyces paulus. J Antibiot 41:1316–1330

    Article  CAS  PubMed  Google Scholar 

  3. Baltz RH (2006) Marcel Faber Roundtable: is our antibiotic pipeline unproductive because of starvation, constipation or lack of inspiration? J Ind Microbiol Biotechnol 33:507–513. doi:10.1371/journal.pone.0149216

    Article  CAS  PubMed  Google Scholar 

  4. Berdy J (2005) Bioactive microbial metabolites—a personal view. J Antibiot 58:1–26

    Article  CAS  PubMed  Google Scholar 

  5. Chen C, Wang J, Guo H, Hou W, Yang N, Ren B, Liu M, Dai H, Liu X, Song F, Zhang L (2013) Three antimycobacterial metabolites identified from a marine-derived Streptomyces sp. MS100061. Appl Microbiol Biotechnol 97:3885–3892. doi:10.1007/s00253-012-4681-0

    Article  CAS  PubMed  Google Scholar 

  6. Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791. doi:10.1111/j.1558-5646.1985.tb00420.x

    Article  PubMed  Google Scholar 

  7. Fenical W, Jensen PR (2006) Developing a new resource for drug discovery: marine actinomycete bacteria. Nat Chem Biol 2:666–673. doi:10.1038/nchembio841

    Article  CAS  PubMed  Google Scholar 

  8. Fischbach MA, Walsh CT (2006) Assembly-line enzymology for polyketide and nonribosomal peptide antibiotics: logic, machinery, and mechanisms. Chem Rev 106:3468–3496. doi:10.1007/s10295-013-1348-5

    Article  CAS  PubMed  Google Scholar 

  9. Gomez-Escribano JP, Bibb MJ (2014) Heterologous expression of natural product biosynthetic gene clusters in Streptomyces coelicolor: from genome mining to manipulation of biosynthetic pathways. J Ind Microbiol Biotechnol 41:425–431. doi:10.1007/s10295-013-1348-5

    Article  CAS  PubMed  Google Scholar 

  10. Guo X, Geng P, Bai F, Bai G, Sun T, Li X, Shi L, Zhong Q (2012) Draft genome sequence of Streptomyces coelicoflavus ZG0656 reveals the putative biosynthetic gene cluster of acarviostatin family alpha-amylase inhibitors. Lett Appl Microbiol 55:162–169. doi:10.1111/j.1472-765X.2012.03274.x

    Article  CAS  PubMed  Google Scholar 

  11. Hodges TW, Slattery M, Olson JB (2012) Unique actinomycetes from marine caves and coral reef sediments provide novel PKS and NRPS biosynthetic gene clusters. Mar Biotechnol 14:270–280. doi:10.1007/s10126-011-9410-7 (NY)

    Article  CAS  PubMed  Google Scholar 

  12. Kamjam M, Sivalingam P, Deng Z, Hong K (2017) Deep sea actinomycetes and their secondary metabolites. Front Microbiol 8:760. doi:10.3390/md15030071

    Article  PubMed  PubMed Central  Google Scholar 

  13. Kwon HC, Kauffman CA, Jensen PR, Fenical W (2006) Marinomycins A-D, antitumor-antibiotics of a new structure class from a marine actinomycete of the recently discovered genus “Marinispora”. J Am Chem Soc 128:1622–1632. doi:10.1021/ja0558948

    Article  CAS  PubMed  Google Scholar 

  14. Lazzarini A, Cavaletti L, Toppo G, Marinelli F (2001) Rare genera of actinomycetes as potential producers of new antibiotics. Anton Leeuw Int J G 79:399–405. doi:10.1023/A:1010287600557

    CAS  Google Scholar 

  15. Liao L, Chen R, Jiang M, Tian X, Liu H, Yu Y, Fan C, Chen B (2016) Bioprospecting potential of halogenases from Arctic marine actinomycetes. BMC Microbiol 16:34. doi:10.1186/s12866-016-0662-2

    Article  PubMed  PubMed Central  Google Scholar 

  16. Liu W, Ahlert J, Gao Q, Wendt-Pienkowski E, Shen B, Thorson JS (2003) Rapid PCR amplification of minimal enediyne polyketide synthase cassettes leads to a predictive familial classification model. Proc Natl Acad Sci USA 100:11959–11963. doi:10.1073/pnas.2034291100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Moore JM, Bradshaw E, Seipke RF, Hutchings MI, McArthur M (2012) Use and discovery of chemical elicitors that stimulate biosynthetic gene clusters in Streptomyces bacteria. Methods Enzymol 517:367–385. doi:10.1016/B978-0-12-404634-4.00018-8

    Article  CAS  PubMed  Google Scholar 

  18. Pathom-aree W, Stach JEM, Ward AC, Horikoshi K, Bull AT, Goodfellow M (2006) Diversity of actinomycetes isolated from Challenger Deep sediment (10,898 m) from the Mariana Trench. Extremophiles 10:181–189. doi:10.1007/s00792-005-0482-z

    Article  CAS  PubMed  Google Scholar 

  19. Prieto-Davó A, Dias T, Gomes SE, Rodrigues S, Parera-Valadezl Y, Borralho PM, Pereira F, Rodrigues CMP, Santos-Sanches I, Gaudencio SP (2016) The madeira archipelago as a significant source of marine-derived actinomycete diversity with anticancer and antimicrobial potential. Front Microbiol. doi:10.3389/fmicb.2016.01594

    PubMed  PubMed Central  Google Scholar 

  20. Qin S, Li J, Chen HH, Zhao GZ, Zhu WY, Jiang CL, Xu LH, Li WJ (2009) Isolation, diversity, and antimicrobial activity of rare actinobacteria from medicinal plants of tropical rain forests in Xishuangbanna, China. Appl Environ Microbiol 75:6176–6186. doi:10.1128/AEM.01034-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Raahave D (1974) Paper disk-agar diffusion assay of penicillin in the presence of streptomycin. Antimicrob Agents Chemother 6:603–605

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  PubMed  Google Scholar 

  23. Schäberle TF (2016) Biosynthesis of alpha-pyrones. Beilstein J Org Chem 12:571–588. doi:10.3762/bjoc.12.56

    Article  PubMed  PubMed Central  Google Scholar 

  24. Song Y, Huang H, Chen Y, Ding J, Zhang Y, Sun A, Zhang W, Ju J (2013) Cytotoxic and antibacterial marfuraquinocins from the deep South China Sea-derived Streptomyces niveus SCSIO 3406. J Nat Prod 76:2263–2268. doi:10.1021/np4006025

    Article  CAS  PubMed  Google Scholar 

  25. Subramani R, Aalbersberg W (2012) Marine actinomycetes: an ongoing source of novel bioactive metabolites. Microbiol Res 167:571–580. doi:10.1016/j.micres.2012.06.005

    Article  CAS  PubMed  Google Scholar 

  26. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729. doi:10.1093/molbev/mst197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Tian XP, Zhang S, Li W (2011) Advance in marine actinobacterial research—a review. Wei sheng wu xue bao= Acta microbiologica Sinica 51:161–169

    CAS  PubMed  Google Scholar 

  28. Toske SG, Jensen PR, Kauffman CA, Fenical W (1995) Elijopyrones A-D: new α-pyrones from a marine actinomycete. Nat Prod Lett 6:303–308. doi:10.1080/10575639508043175

    Article  CAS  Google Scholar 

  29. Wawrik B, Kutliev D, Abdivasievna UA, Kukor JJ, Zylstra GJ, Kerkhof L (2007) Biogeography of actinomycete communities and type II polyketide synthase genes in soils collected in New Jersey and Central Asia. Appl Environ Microbiol 73:2982–2989. doi:10.1128/AEM.02611-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Wiley PF, Mizsak SA, Baczynskyj L, Argoudelis AD (1984) The structure of paulomycin. J Antibiot 37:1273–1275

    Article  CAS  PubMed  Google Scholar 

  31. Yang N, Sun C (2016) The inhibition and resistance mechanisms of actinonin, isolated from marine Streptomyces sp. NHF165, against Vibrio anguillarum. Front Microbiol 7:1467. doi:10.3389/fmicb.2016.01467

    PubMed  PubMed Central  Google Scholar 

  32. Zhang W, Liu Z, Li S, Lu Y, Chen Y, Zhang H, Zhang G, Zhu Y, Zhang G, Zhang W, Liu J, Zhang C (2012) Fluostatins I-K from the South China Sea-derived Micromonospora rosaria SCSIO N160. J Nat Prod 75:1937–1943. doi:10.1021/np300505y

    Article  CAS  PubMed  Google Scholar 

  33. Zhang XM, Sun MW, Shi H, Lu CH (2017) α-Pyrone derivatives from a marine actinomycete Nocardiopsis sp. YIM M13066. Nat Prod Res. doi:10.1080/14786419.2017.1299730

    Google Scholar 

  34. Zou G, Liao XJ, Peng Q, Chen GD, Wei FY, Xu ZX, Zhao BX, Xu SH (2017) A new alpha-pyrone from the deep-sea actinomycete Nocardiopsis dassonvillei subsp. dassonvillei DSM 43111(T). J Asian Nat Prod Res. doi:10.1080/10286020.2017.1307186

    Google Scholar 

Download references

Acknowledgements

This work was supported by grants from Shandong Provincial Natural Science Foundation, China (ZR2016CB13) and National Natural Science Foundation of China (31600136).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fuhang Song.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1293 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, N., Song, F. Bioprospecting of Novel and Bioactive Compounds from Marine Actinomycetes Isolated from South China Sea Sediments. Curr Microbiol 75, 142–149 (2018). https://doi.org/10.1007/s00284-017-1358-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-017-1358-z

Navigation