Skip to main content
Log in

Transcriptomic Analysis of the Swarm Motility Phenotype of Salmonella enterica Serovar Typhimurium Mutant Defective in Periplasmic Glucan Synthesis

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Movement of food-borne pathogens on moist surfaces enables them to migrate towards more favorable niches and facilitate their survival for extended periods of time. Salmonella enterica serovar Typhimurium mutants defective in Osmoregulated periplasmic glucans (OPG) synthesis are unable to exhibit motility on moist surfaces (swarming); however, their mobility in liquid (swim motility) remains unaffected. In order to understand the role of OPG in swarm motility, transcriptomic analysis was performed using cells growing on a moist agar surface. In opgGH deletion mutant, lack of OPG significantly altered transcription of 1039 genes out of total 4712 genes (22%). Introduction of a plasmid-borne copy of opgGH into opgGH deletion mutant restored normal expression of all but 30 genes, indicating a wide-range influence of OPG on gene expression under swarm motility condition. Major pathways that were differentially expressed in opgGH mutants were motility, virulence and invasion, and genes related to the secondary messenger molecule, cyclic di-GMP. These observations provide insights and help explain the pleiotropic nature of OPG mutants such as sub-optimal virulence and competitive organ colonization in mice, biofilm formation, and sensitivity towards detergent stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Andrews S (2010) FastQC: a quality control tool for high throughput sequence data. http://www.bioinformatics.babraham.ac.uk/projects/fastqc

  2. Badie G, Heithoff DM, Sinsheimer RL, Mahan MJ (2007) Altered levels of Salmonella DNA adenine methylase are associated with defects in gene expression, motility, flagellar synthesis, and bile resistance in the pathogenic strain 14028 but not in the laboratory strain LT2. J Bacteriol 189:1556–1564

    Article  CAS  PubMed  Google Scholar 

  3. Bhagwat AA, Gross KC, Tully RE, Keister DL (1996) ß-Glucan synthesis in Bradyrhizobium japonicum: characterization of a new locus (ndvC) influencing ß-(1,6)-linkages. J Bacteriol 178:4635–4642

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Bhagwat AA, Jun W, Liu L, Kannan P, Dharne M, Pheh B, Tall BD, Kothary MH, Gross KC, Angle S et al (2009) Osmoregulated periplasmic glucans of Salmonella enterica serovar Typhimurium are required for optimal virulence in mice. Microbiology 155:229–237

    Article  CAS  PubMed  Google Scholar 

  5. Bhagwat AA, Leow Y, Liu L, Dharne M, Kannan P (2012) Role of anionic charges of periplasmic glucans of Shigella flexneri in overcoming detergent stress. Foodborne Pathog Dis 9:632–637

    Article  CAS  PubMed  Google Scholar 

  6. Bhagwat AA, Phadke RP, Wheeler D, Kalantre S, Ram M, Bhagwat M (2003) Computational methods and evaluation of RNA stabilization reagents for genome-wide expression studies. J Microbiol Methods 55:399–409

    Article  CAS  PubMed  Google Scholar 

  7. Bhagwat AA, Tully RE, Keister DL (1992) Isolation and characterization of an ndvB locus from Rhizobium fredii. Mol Microbiol 6:2159–2165

    Article  CAS  PubMed  Google Scholar 

  8. Bhagwat AA, Ying ZI, Karns J, Smith A (2013) Determining RNA quality for NextGen sequencing: some exceptions to the gold standard rule of 23S to 16S rRNA ratio. Microbiol Discov. doi:10.7243/2052-6180-7241-7210

    Google Scholar 

  9. Bhagwat AA, Ying ZI, Smith A (2014) Evaluation of ribosomal RNA removal protocols for Salmonella RNA-seq projects. Adv Microbiol 4:25–32

    Article  Google Scholar 

  10. Bogomolnaya LM, Aldrich L, Ragoza Y, Talamantes M, Andrews KD, McClelland M, Andrews-Polymenis HL (2014) Identification of novel factors involved in modulating motility of Salmonella enterica serotype Typhimurium. PLoS ONE 9:e111513

    Article  PubMed  PubMed Central  Google Scholar 

  11. Bohin J-P (2000) Osmoregulated periplasmic glucans in Proteobacteria. FEMS Microbiol Lett 186:11–19

    Article  CAS  PubMed  Google Scholar 

  12. Bohin J-P, Lacroix J-M (2007) Osmoregulation in the periplasm. In: Ehrmann M (ed) The periplasm. ASM Press, Washington, DC, pp 325–341

    Google Scholar 

  13. Bontemps-Gallo S, Lacroix J-M (2015) New insights into the biological role of the osmoregulated periplasmic glucans in pathogenic and symbiotic bacteria. Environ Microbiol Rep 7:690–697

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Bouchart F, Boussemart G, Prouvost A-F, Cogez V, Madec E, Vidal O, Delrue B, Bohin J-P, Lacroix J-M (2010) The virulence of a Dickeya dadantii 3937 mutant devoid of osmoregulated periplasmic glucans is restored by inactivation of the RcsCD-RcsB phosphorelay. J Bacteriol 192:3484–3490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Conter A, Gangneux C, Suzanne M, Gutierrez C (2001) Survival of Escherichia coli during long-term starvation: effects of aeration, NaCl, and the rpoS and osmC gene products. Res Microbiol 152:17–26

    Article  CAS  PubMed  Google Scholar 

  16. Cooper B, Chen R, Garrett WM, Murphy C, Chang C, Tucker ML, Bhagwat AA (2012) Proteomic pleiotropy of OpgGH, an operon necessary for efficient growth of Salmonella enterica serovar Typhimurium under low-osmotic conditions. J Prot Res 11:1720–1727

    Article  CAS  Google Scholar 

  17. Dharne M, Kannan P, Murphy C, Smith A, Bhagwat AA (2015) Swarm and swim motilities of Salmonella enterica serovar Typhimurium and role of osmoregulated periplasmic glucans. Microbiol Discov 3:1–7

    Article  Google Scholar 

  18. Dylan T, Nagpal P, Helinski DR, Ditta GS (1990) Symbiotic pseudorevertants of Rhizobium meliloti ndv mutants. J Bacteriol 172:1409–1417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Fass E, Groisman EA (2009) Control of Salmonella pathogenicity island-2 gene expression. Curr Opin Microbiol 12:199–204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Giaever HM, Styrvold OB, Kaasen I, Strøm AR (1988) Biochemical and genetic characterization of osmoregulatory trehalose synthesis in Escherichia coli. J Bacteriol 170:2841–2849

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Guiney DG, Fierer J (2011) The role of the spv genes in Salmonella pathogenesis. Front Microbiol 2:129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Harshey RM, Matsuyama T (1994) Dimorphic transition in Escherichia coli and Salmonella typhimurium: surface-induced differentiation into hyperflagellate swarmer cells. Proc Natl Acad Sci USA 91:8631–8635

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Heithoff DM, Sinsheimer RL, Low D, Mahan MJ (1999) An essential role for DNA adenine methylation in bacterial virulence. Science 284:967–970

    Article  CAS  PubMed  Google Scholar 

  24. Heng L, Durbin R (2009) Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25:1754–1760

    Article  Google Scholar 

  25. Hengge R, Galperin MY, Ghigo J-M, Gomelsky M, Green J, Hughes KT, Jenal U, Landini P (2016) Systematic nomenclature for GGDEF and EAL domain-containing cyclic Di-GMP turnover proteins of Escherichia coli. J Bacteriol 198:7–11

    Article  CAS  Google Scholar 

  26. Hu Y, Yan C, Hsu C-H, Chen Q-R, Niu K, Komatsoulis GA, Meerzaman D (2014) OmicCircos: a simple-to-use r package for the circular visualization of multidimensional omics data. Cancer Inform 13:13–20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kannan P, Dharne M, Smith A, Karns J, Bhagwat AA (2009) Motility revertants of opgGH mutants of Salmonella enterica serovar Typhimurium remain defective in mice virulence. Curr Microbiol 59:641–645

    Article  CAS  PubMed  Google Scholar 

  28. Lacroix C, Bohin J-P (2010) Osmoregulated periplasmic glucan polymerization requires constant protein synthesis in Escherichia coli. Curr Microbiol 61:396–400

    Article  CAS  PubMed  Google Scholar 

  29. Le Guyon S, Simm R, Rehn M, Römling U (2015) Dissecting the cyclic di-guanylate monophosphate signalling network regulating motility in Salmonella enterica serovar Typhimurium. Environ Microbiol 17:1310–1320

    Article  PubMed  Google Scholar 

  30. Lennon CW, Thamsen M, Friman ET, Cacciaglia A, Sachsenhauser V, Sorgenfrei FA, Wasik MA, Bardwell JCA (2015) Folding optimization in vivo uncovers new chaperones. J Mol Biol 427:2983–2994

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Lequette Y, Lanfroy E, Cogez V, Bohin J-P, Lacroix J-M (2008) Biosynthesis of osmoregulated periplasmic glucans in Escherichia coli: the membrane-bound and the soluble periplasmic phosphoglycerol transferases are encoded by the same gene. Microbiology 154:476–483

    Article  CAS  PubMed  Google Scholar 

  32. Liu L, Dharne M, Kannan P, Smith A, Meng J, Fan M, Boren TL, Ranallo RT, Bhagwat AA (2010) Osmoregulated periplasmic glucans synthesis gene family of Shigella flexneri. Arch Microbiol 192:167–174

    Article  CAS  PubMed  Google Scholar 

  33. Liu L, Tan S, Jun W, Smith A, Meng J, Bhagwat AA (2009) Osmoregulated periplasmic glucans are needed for competitive growth and biofilm formation by Salmonella enterica serovar Typhimurium in leafy-green vegetable wash waters and colonization in mice. FEMS Microbiol Lett 292:13–20

    Article  CAS  PubMed  Google Scholar 

  34. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-delataCT) method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  35. Mah T-F, Pitts B, Pellock B, Walker GC, Stewart PS, O’Toole GA (2003) A genetic basis for Pseudomonas aeruginosa biofilm antibiotic resistance. Nature 426:306–310

    Article  CAS  PubMed  Google Scholar 

  36. Marcus SL, Brumell JH, Pfeifer CG, Finlay BB (2000) Salmonella pathogenicity islands: big virulence in small packages. Microb Infect 2:145–156

    Article  CAS  Google Scholar 

  37. Minamino T, Kinoshita M, Inoue Y, Morimoto YV, Ihara K, Koya S, Hara N, Nishioka N, Kojima S, Homma M et al (2016) FliH and FliI ensure efficient energy coupling of flagellar type III protein export in Salmonella. MicrobiologyOpen 5:424–435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Mithöfer A, Bhagwat AA, Ebel J, Neuhaus G, Keister DL (2001) Bradyrhizobium japonicum mutants defective in ß-glucan synthesis show enhanced sensitivity to plant defense responses. Z Naturforsch 56C:581–584

    Google Scholar 

  39. Paul K, Nieto V, Carlquist WC, Blair DF, Harshey RM (2010) The c-di-GMP binding protein YcgR controls flagellar motor direction and speed to affect chemotaxis by a “backstop brake” mechanism. Mol Cell 38:128–139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Pfaffl MW (2001) A new mathematical model for relative quantitation in real-time RT-PCR. Nucleic Acids Res 29:2002–2007

    Article  Google Scholar 

  41. Povolotsky TL, Hengge R (2016) Genome-based comparison of cyclic Di-GMP signaling in pathogenic and commensal Escherichia coli strains. J Bacteriol 198:111–126

    Article  CAS  Google Scholar 

  42. Puvanesarajah V, Schell FM, Stacey G, Douglas CJ, Nester EW (1985) Role for 2-linked-beta-D-glucan in the virulence of Agrobacterium tumefaciens. J Bacteriol 164:102–106

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Rigano LA, Payette C, Brouillard G, Marano MR, Abramowicz L, Torres PS, Yun M, Castagnaro AP, Oirdi ME, Dufour V et al (2007) Bacterial cyclic {beta}-(1,2)-glucan acts in systemic suppression of plant immune responses. Plant Cell 19:2077–2089

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Schulman H, Kennedy EP (1979) Localization of membrane-derived oligosaccharides in the outer envelope of Escherichia coli and their occurrence in other Gram-negative bacteria. J Bacteriol 137:686–688

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Smith AD, Yan X, Chen C, Dawson HD, Bhagwat AA (2016) Understanding the host-adapted state of Citrobacter rodentium by transcriptomic analysis. Arch Microbiol 198:353–362

    Article  CAS  PubMed  Google Scholar 

  46. Solano C, García B, Latasa C, Toledo-Arana A, Zorraquino V, Valle J, Casals J, Pedroso E, Lasa I (2009) Genetic reductionist approach for dissecting individual roles of GGDEF proteins within the c-di-GMP signaling network in Salmonella. Proc Natl Acad Sci USA 106:7997–8002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Stafford GP, Ogi T, Hughes C (2005) Binding and transcriptional activation of non-flagellar genes by the Escherichia coli flagellar master regulator FlhD(2)C(2). Microbiology (Reading, England) 151:1779–1788

    Article  CAS  Google Scholar 

  48. Wada T, Hatamato Y, Kutsukake K (2012) Functional and expressional analyses of the anti-FlhD4C2 factor gene ydiV in Escherichia coli. Microbiology 158:1533–1542

    Article  CAS  PubMed  Google Scholar 

  49. Wada T, Tanabe Y, Kutsukake K (2011) FliZ acts as a repressor of the ydiV gene, which encodes an anti-FlhD4C2 factor of the flagellar regulon in Salmonella enterica serovar Typhimurium. J Bacteriol 193:5191–5198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgement

We acknowledge skillful technical assistance of Ms. Nadia George.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Arvind A. Bhagwat or Allen D. Smith.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhagwat, A.A., Young, L., Smith, A.D. et al. Transcriptomic Analysis of the Swarm Motility Phenotype of Salmonella enterica Serovar Typhimurium Mutant Defective in Periplasmic Glucan Synthesis. Curr Microbiol 74, 1005–1014 (2017). https://doi.org/10.1007/s00284-017-1267-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-017-1267-1

Navigation