Skip to main content
Log in

Degradation of 2,4 Dichlorobiphenyl Via Meta-cleavage Pathway by Pseudomonas spp. Consortium

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Two bacterial isolates (Pseudomonas sp. GSa and Pseudomonas sp. GSb) were in close association able to assimilate 2,4 dichlorobiphenyl (2,4 CB), a PCB congener. GC–MS analysis of spent culture medium of the consortium with 2,4 CB as substrate showed 90 % degradation (according to Electron capture detection values) with catechol as one of the important intermediate compounds through meta-cleavage pathway. Further, ability of the consortium to utilise PCB congeners, Methoxychlor, Aroclor 1016, Chlorobenzoic acids and Monoaromatic compounds indicated that the consortium of GSa and GSb would be an ideal candidate for in situ bioremediation of PCB.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Adriaens P, Kohler HP, Kohler SD, Focht DD (1989) Bacterial dehalogenation of chlorobenzoates and coculture biodegradation of 4,4′-dichlorobiphenyl. Appl Environ Microbiol 55:887–892

    PubMed Central  CAS  PubMed  Google Scholar 

  2. Arensdorf JJ, Focht DD (1994) Formation of chlorocatechol meta cleavage products by a pseudomonad during metabolism of monochlorobiphenyls. Appl Environ Microbiol 60:2884–2889

    PubMed Central  CAS  PubMed  Google Scholar 

  3. Bevenakatti BG, Ninnekar HZ (1993) Biodegradation of 4-Chlorobiphenyl by Micrococcus species. World J Microbiol Biotechnol 9:607–608

    Article  Google Scholar 

  4. Blasco R, Wittich RM, Mallavarapu M, Timmis KN, Pieper DH (1995) From xenobiotic to antibiotic, formation of protoanemonin from 4-chlorocatechol by enzymes of the 3-oxoadipate pathway. J Biol Chem 270:29229–29235

    Article  CAS  PubMed  Google Scholar 

  5. Commandeur LCM, May R, Mokross H, Bedard DL, Reineke Govers HAJ, Parsons JR (1996) Aerobic degradation of polychlorinated biphenyls by Alcaligenes sp. JBI: metabolites and enzymes. Biodegradation 7:435–443

    Article  CAS  PubMed  Google Scholar 

  6. Crawford RL, Hers TF, Paszczynski A (2004) Combined biological and abiological degradation of xenobiotic compounds. Biodegrad Bioremediat Soil Biol 2:251–278

    Article  CAS  Google Scholar 

  7. Dai S, Vaillancourt FH, Maaroufi H, Drouin NM, Neau DB, Snieckus V, Bolin JT, Eltis LD (2002) Identification and analysis of bottleneck in PCB biodegradation. Nat Struct Biol 9:934–939

    Article  CAS  PubMed  Google Scholar 

  8. Faroon O, Keith L, Smith-Simon C, De Rosa C (2003) Polychlorinated biphenyls. Human health aspects In Concise international chemical assessment document 55. World Health Organisation Geneva. Inc 432-435

  9. Fava F, Di Gioia D, Cinti S, Marchetti L, Quattroni G (1994) Degradation and dechlorination of low-chlorinated biphenyls by a three–membered bacterial coculture. Appl Microbiol Biotechnol 41:117–123

    Article  CAS  Google Scholar 

  10. Fetzner S, Lingens F (1994) Bacterial dehalogenases: biochemistry, genetics, and biotechnological applications. Microbiol Reviews 58:641–685

    CAS  Google Scholar 

  11. Furukawa K, Chakrabarthy AM (1982) Involvement of plasmids in total degradation of polychlorinated biphenyls. Appl Environ Microbiol 44:619–626

    PubMed Central  CAS  PubMed  Google Scholar 

  12. Furukawa K (2006) Oxygenases and dehalogenases molecular approaches to efficient degradation of chlorinated environmental pollutants. Biosci Biotechnol Biochem 70:2335–2348

    Article  CAS  PubMed  Google Scholar 

  13. Greenberg AE, Clesceri LS, Eaton AD (1992) Standard Methods for the Examination of Water and Wastewater, 18th edn. APHA, Washington

    Google Scholar 

  14. Ibanez JG, Hernandez-Esparza M, Doria-Serrano C, Fregoso-Infante A, Singh MM (2007) Environmental chemistry: fundamentals. Springer, New York

    Book  Google Scholar 

  15. Komancova M, Jurcova I, Kochankova L, Burkhard J (2003) Metabolic pathways of polychlorinated biphenyls degradation by Pseudomonas sp. 2. Chemosphere 50:537–543

    Article  CAS  PubMed  Google Scholar 

  16. Maltseva OV, Tsoi TV, Quensen JF III, Fukuda M, Tiedje JM (1999) Degradation of anaerobic reductive dechlorination products of Aroclor 1242 by four aerobic bacteria. Biodegradation 10:363–371

    Article  CAS  PubMed  Google Scholar 

  17. Marcin S, Stanislaw K (1999) Habitat conditions of nymphaeid associations in Poland. Hydrobiologia 415:177–185

    Article  Google Scholar 

  18. Martinez P, Agullo L, Hernandez M, Seeger M (2007) Chlorobenzoate inhibits growthand induces stess proteins in the PCB—degrading strain Burkholderia xenovarans LB400. Arch Microbiol 188:289–297

    Article  CAS  PubMed  Google Scholar 

  19. Piper DH (2005) Aerobic degradation of polychlorinated biphenyls. Appl Microbiol Biotechnol 67:170–191

    Article  Google Scholar 

  20. Potrawfke T, Lohnert TH, Timmis KN, Wittich RM (1998) Mineralization of low- chlorinated biphenyls by Burkholderiasp. Strain LB400 and by a two-membered consortium upon directed interspecies transfer of chlorocatechol pathway genes. Appl Microbial Biotech 50:440–446

    Article  CAS  Google Scholar 

  21. Powlowski J, Shingler V (1994) Genetics and biochemistry of phenol degradation by Pseudomonas sp CF 600. Biodegradation 5:219–236

    Article  CAS  PubMed  Google Scholar 

  22. Robinson GK, Lenn MJ (1994) The bioremediation of polychlorinated biphenyls (PCBs): problems and perspectives. Biotechnol Gen Eng Rev 12:139–188

    Article  CAS  Google Scholar 

  23. Zak S (2006) Detection of meta-and ortho-cleavage dioxygenases in bacterial phenol- degraders. J Appl Sci Environ 10:75–81

    Google Scholar 

  24. Seeger M, Timmis KN, Hoffer B (1995) Conversion of chlorobiphenyls into phenylhexadienoates and benzoates by the enzymes of the upper pathway for polychlorinated biphenyl degradation encoded by the bph locus of Pseudomonas sp. Strain LB400. Appl Environ Microbiol 61:2654–2658

    PubMed Central  CAS  PubMed  Google Scholar 

  25. Seo JS, Keum YS, Li QX (2009) Bacterial degradation of aromatic compounds. Int J Environ Res Public Health 6:278–309

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Seto M, Masai E, Ida M, Hatta T, Fukuda M, Yano K (1995) Multipolychlorinated biphenyl transformation systems in the Gram-positive bacterium Rhodococcus sp. strain RHA1. Appl Environ Microbiol 61:4510–4513

    PubMed Central  CAS  PubMed  Google Scholar 

  27. Seubert W (1960) Determination of isoprenoid compounds by microorganisms. Isolation and characterization of an isoprenoid degrading bacterium Pseudomonas citronellolis, new species. J Bacteriol 79:426–434

    PubMed Central  CAS  PubMed  Google Scholar 

  28. Singh K (2008) Biodegradation and bioremediation of pesticide in soil: concepts, method and recent development. Indian J Microbiol 48:35–40

    Article  PubMed Central  PubMed  Google Scholar 

  29. Skiba A, Hecht V, Pieper DH (2002) Formation of protoanemonin from 2-chloro-cis, cis-muconate by the combined action of muconate cycloisomerase and muconolactone isomerase. J Bacteriol 184:5402–5409

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Somaraja PK, Gayathri D, Ramaiah N (2013) Molecular characterization of 2-chlorobiphenyl degrading Stenotrophomonas maltophilia GS-103. Bulletin Environ Conta Toxicol 9:148–153. doi:10.1007/s00128-013-1044-1

    Article  Google Scholar 

  31. Sondossi M, Sylvestre M, Ahmed D (1992) Effects of chlorobenzoate transformation on the Pseudomonas testosterone biphenyl and chlorobiphenyl degradation pathway. Appl Environ Microbiol 58:485–495

    PubMed Central  CAS  PubMed  Google Scholar 

  32. Totevova S, Prouza M, Burkhard J, Demnerova K, Brenner V (2002) Characterization of polychlorinated biphenyl- degrading bacteria isolated from contaminated sites in Czechia. Folia Microbiol 47:247–254

    Article  CAS  Google Scholar 

  33. Wiegel J, Wu Q (2000) Microbial reductive dehalogenation of polychlorinated biphenyls. FEMS Microbiol Ecol 32:1–15. doi:10.1111/j.1574-6941.2000.tb00693.x

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Devaraja Gayathri.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jayanna, S.K., Gayathri, D. Degradation of 2,4 Dichlorobiphenyl Via Meta-cleavage Pathway by Pseudomonas spp. Consortium. Curr Microbiol 70, 871–876 (2015). https://doi.org/10.1007/s00284-015-0800-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-015-0800-3

Keywords

Navigation