Skip to main content

Combined Biological and Abiological Degradation of Xenobiotic Compounds

  • Chapter
Biodegradation and Bioremediation

Part of the book series: Soil Biology ((SOILBIOL,volume 2))

Abstract

In this chapter, we will discuss approaches to bioremediation of recalcitrant xenobiotic chemicals, specifically approaches that employ a combination of chemical (or physical) and biological steps to increase the efficacy of contaminant destruction. Varieties of chemical agents and processes have been applied toward this goal. Prominent among these procedures is the use of pretreatments with strong oxidizing agents such as ozone, Fenton’s reagent (Fe2+ + H2O2), potassium permanganate (KMnO4), or ferrate (K2FeO4) to convert recalcitrant molecules to oxidized products that are more amenable to biodegradation than the parent contaminant. Other chemical and physical agents, however, also have been employed in this manner, including powerful reductants such as zero-valent iron (Fe0) and the use of ultrasound or electric fields. Studies of combined chemical-biological treatment processes have been performed using pure microbial cultures, mixed microbial systems under rigorously controlled laboratory conditions’ or actual wastewaters or contaminated soils. We will discuss these different investigations in separate sections of our review. We will begin with a brief description of the primary chemical and physical agents used in combined physiochemical-biological treatment schemes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Akamatsu Y, Ma DB, Higuchi T, Shimada M (1990) A novel enzymatic decarboxylation of oxalic acid by the lignin peroxidase system of white rot fungus Phanerochaete chrysosporium. FEBS Lett 269: 261–263

    CAS  Google Scholar 

  • Ananthaswamy HN, Eisenstark A (1977) Repair of hydrogen peroxide-induced singlestrand breaks in Escherichia coli deoxyribonucleic acid. J Bacteriol 130: 187–191

    CAS  Google Scholar 

  • Ander P, Marzullo L (1997) Sugar oxidoreductases and veratryl alcohol oxidase as related to lignin degradation. J Biotechnol 53: 115–131

    CAS  Google Scholar 

  • Andrews T, Zervas D, Greenburg RS (1997) Oxidizing agent can finish cleanup where other systems taper off. Soil Groundwater Cleanup July: 39–42

    Google Scholar 

  • Bartzatt R, Nagel D (1991) Removal of nitrosamines from waste water by potassium ferrate oxidation. Arch Environ Health 46: 313–315

    CAS  Google Scholar 

  • Bartzatt R, Cano M, Johnson L, Nagel D (1992) Removal of toxic metals and nonmetals from contaminated water. J Toxicol Environ Health 35: 205–210

    CAS  Google Scholar 

  • Beltran-Heredia J, Torregrosa J, Dominguez JR, Garcia J (2000) Aerobic biological treatment of black table olive washing wastewaters: effect of an ozonation stage. Proc Biochem 35: 1183–1190

    CAS  Google Scholar 

  • Bielski BH (1991) Studies of hypervalent iron. Free Rad Res Commun 12–13: 469–477

    Google Scholar 

  • Brot N, Weissbach L, Wearth J, Weissnach H (1981) Enzymatic reduction of protein-bound methionine sulfoxide. Proc Natl Acad Sci USA 78: 2155–2158

    CAS  Google Scholar 

  • Brown RA, Norris RD (1994) The evolution of a technology: hydrogen peroxide in in situ bioremediation. In: Hinchee RE, Alleman BC, Hoeppel RE, Miller RN (eds) Hydrocarbon bioremediation. Lewis, Boca Raton, pp 148–162

    Google Scholar 

  • Brown RA, Norris RD, Raymond RL (1994) Oxygen transport in contaminated aquifers with hydrogen peroxide. In: Proceedings of the NWWA/API Conference on Petroleum hydrocarbons and organic chemicals in groundwater: prevention, detection and restoration. National Water Well Association, Worthington, pp 441–450

    Google Scholar 

  • Buchmeier NA, Libby SJ, Xu Y, Loewen PC, Switala J, Guiney DG (1995) DNA repair is more important than catalase for Salmonella virulence in mice. J Clin Invest 95: 1047–1053

    CAS  Google Scholar 

  • BĂĽyĂĽksönmez F, Hess TF, Crawford RL, Watts RJ (1998a) Toxic effects of modified Fenton reactions on Xanthobacter flavus FB71. Appl Environ Microbiol 64: 3759–3764

    Google Scholar 

  • BĂĽyĂĽksönmez F, Hess TF, Crawford RL, Paszczynski, A, Watts RJ (1998b) Simultaneous abiotic-biotic mineralization of perchloroethylene (PCE). In: Wicramanayake GB, Hinchee RE (eds) Designing and Applying Treatment Technologies: Remediation of Chlorinated and Recalcitrant Compounds. Battelle Press, Columbus, OH, pp 277–282

    Google Scholar 

  • BĂĽyĂĽksönmez F, Hess TF, Crawford RL, Paszczynski A, Watts RJ (1999) Optimization of simultaneous chemical and biological mineralization of perchloroethylene ( PCE ). Appl Environ Microbiol 65: 2784–2788

    Google Scholar 

  • Carberry JB, Benzing TM (1991) Peroxide pre-oxidation of recalcitrant toxic waste to enhance biodegradation. Water Sci Technol 23: 367–376

    CAS  Google Scholar 

  • Chao AC (1996) Quality improvement of biosolids by ferrate(VI) oxidation of offensive odour compounds. Water Sci Technol 33: 119–130

    Google Scholar 

  • Choe S, Chang YY, Hwang KY, Khim J (2000) Kinetics of reductive denitrification by nanoscale zero-valent iron. Chemosphere 41: 1307–1311

    CAS  Google Scholar 

  • Damm JH, Hardacre C, Kahn RM, Walsh KP (2002) Kinetics of the oxidation of methyl tert-butyl ether ( MTBE) by potassium permanganate. Water Res 36: 3638–3646

    Google Scholar 

  • Devevre D, Garbaye J, Botton B (1996) Release of complexing organic acids by rhizosphere fungi as a factor in Norway spruce yellowing in acidic soil. Mycol Res 100: 1367–1374

    CAS  Google Scholar 

  • Dombrovskaya EN, Kostyshin SS (1996) Effects of surfactants of different tonic nature on the ligninolytic enzyme complexes of the white-rot fungi Pleurotus floridae and Phellinus igniarius. Biochemistry 61: 215–220

    Google Scholar 

  • Dorfman LM, Adams GE (1973) Document NSRDS-NBS-46. National Bureau of Standards, Washington, DC

    Google Scholar 

  • Drzyzga O, Gottschal JC (2002) Tetrachloroethene dehalorespiration and growth of Desulfitobacterium frappieri TCE1 in strict dependence on the activity of Desulfovibrio fructosivorans. Appl Environ Microbiol 68: 642–649

    CAS  Google Scholar 

  • Dutton MV, Evans CS (1996) Oxalate production by fungi: Its role in pathogenicity and ecology in the soil environment. Can J Microbiol 42: 881–895

    Google Scholar 

  • Dutton MV, Evans CS, Atkey PT, Wood DA (1993) Oxalate production by Basidiomycetes, Including the White-Rot Species Coriolus versicolor and Phanerochaete chrysosporium. Appl Microbiol Biotechnol 39: 5–10

    CAS  Google Scholar 

  • Dutton MV, Kathiara M, Gallagher IM, Evans CS (1994) Purification and characterization of oxalate decarboxylase from Coriolus versicolor. FEMS Microbiol Lett 116: 321–326

    CAS  Google Scholar 

  • Enoki A, Hirano T, Tanaka H (1992) Extracellular substance from brown-rot basidiomycete Gloeophyllum trabeum that produces and reduces hydrogen peroxide. Mater Org 27: 247–261

    CAS  Google Scholar 

  • Enoki A, Itakura S, Tanaka H (1997) The involvement of extracellular substances for reducing molecular oxygen to hydroxyl radical and ferric iron to ferrous iron in wood degradation by wood decay fungi. J Biotechnol 53: 265–272

    CAS  Google Scholar 

  • Eriksson KEL, Blanchette RA, Ander P (1990) Lignin degradation by brown-rot, soft-rot and other fungi. In: Timell TE (ed) Microbial and enzymatic degradation of wood and wood components. Springer, Berlin Heidelberg New York, pp 312–319

    Google Scholar 

  • Espejo E, Aguilar A (1991) Production and degradation of oxalic acid by brown rot fungi. Appl Environ Microbiol 57: 1980–1986

    CAS  Google Scholar 

  • Fahr K, Wetzstein HG, Grey R, Schlosser D (1999) Degradation of 2,4-dichlorophenol and pentachlorophenol by two brown rot fungi. FEMS Microbiol Lett 175: 127–132

    CAS  Google Scholar 

  • Fekete F, Chandhoke V, Jellison J (1989) Iron-binding compounds produced by wooddecaying basidiomycetes. Appl Environ Microbiol 55: 2720–2722

    CAS  Google Scholar 

  • Fenton HJH (1894) Oxidation of tartaric acid in presence of iron. J Chem Soc 65: 899–910

    CAS  Google Scholar 

  • Fetzner S (1998) Bacterial dehalogenation. Appl Microbiol Biotechnol 50: 633–657

    CAS  Google Scholar 

  • Fiorenza S, Ward CH (1997) Microbial adaptation to hydrogen peroxide and biodegradation of aromatic hydrocarbons. J Ind Microbiol Biotechnol 18: 140–151

    CAS  Google Scholar 

  • Forney L, Reddy C, Packrats H (1982) Ultrastructural localization of hydrogen peroxide production in ligninolytic Phanerochaete chrysosporium cells. Appl Environ Microbiol 44: 732–736

    CAS  Google Scholar 

  • Freire RS, Kubota LT, Duran N (2001) Remediation and toxicity removal from Kraft El paper mill effluent by ozonization. Environ Technol 22: 897–904

    CAS  Google Scholar 

  • Gadd GM (1999) Fungal production of citric and oxalic acid: importance in metal speciation, physiology and biogeochemical processes. Adv Microb Physiol 41: 47–92

    CAS  Google Scholar 

  • Gharieb MM, Gadd GM (1999) Influence of nitrogen source on the solubilization of natural gypsum (CaSO42H2O) and the formation of calcium oxalate by different oxalic and citric acid-producing fungi. Mycol Res 103: 473–481

    CAS  Google Scholar 

  • Ghauch A (2001) Degradation of benomyl, picloram, and dicamba in a conical apparatus by zero-valent iron powder. Chemosphere 43: 1109–1117

    CAS  Google Scholar 

  • Ghauch A, Suptil J (2000) Remediation of s-triazines contaminated water in a laboratory scale apparatus using zero-valent iron powder. Chemosphere 41: 1835–1843

    CAS  Google Scholar 

  • Ghauch A, Gallet C, Charef A, Rima J, Martin-Bouyer M (2001) Reductive degradation of carbaryl in water by zero-valent iron. Chemosphere 42: 419–424

    CAS  Google Scholar 

  • Goodell B, Jellison J, Liu J, Daniel G, Paszczynski A, Fekete F, Krishnamurthy S, Jun L, Xu G (1997) Low molecular weight chelators and phenolic compounds isolated from wood decay fungi and their role in the fungal biodegradation of wood. J Biotechnol 53: 133–162

    CAS  Google Scholar 

  • Gu B, Watson DB, Wu L, Phillips DH, White DC, Zhou J (2002) Microbiological characteristics in a zero-valent iron reactive barrier. Environ Monit Assess 77: 293–309

    Google Scholar 

  • Haber F, Weiss J (1934) The catalytic decomposition of hydrogen peroxide by iron salts. Proc R Soc Lond 147A: 332–351

    CAS  Google Scholar 

  • Hassan HM, Fridovich I (1978) Regulation of the synthesis of catalase and peroxidase in Escherichia coli. J Biol Chem 253: 6445–6450

    CAS  Google Scholar 

  • Hess TF, Schrader PS (2002) Coupled abiotic-biotic mineralization of 2,4,6-trinitrotoluene ( TNT ). J Environ Qual 31: 736–744

    Google Scholar 

  • Hess TF, Lewis TA, Crawford RL, Katamneni S, Wells JH, Watts, RJ (1998) Combined photocatalytic and fungal treatment for the destruction of 2,4,6-trinitrotoluene ( TNT ). Water Res 32: 1481–1491

    Google Scholar 

  • Highley T (1980) Degradation of cellulose by Postia placenta in the presence of compounds that affect hydrogen peroxide. Mater Org 15: 93–113

    Google Scholar 

  • Hirano T, Tanaka H, Enoki A (1995) Extracellular substance from the brown-rot basidiomycete Tyromyces palustris that reduces molecular oxygen to hydroxyl radicals and ferric iron to ferrous iron. Mokuzai Gakkaishi 41: 334–341

    CAS  Google Scholar 

  • Hirano T, Tanaka H, Enoki A (1997) Relationship between production of hydroxyl radicals and degradation of wood by the brown-rot fungus, Tyromyces palustris. Holzforschung 51: 389–395

    CAS  Google Scholar 

  • Hoigne J, Faust BC, Haag WR, Scully FE, Zepp RG (1989) Aquatic humic substances as source and sink of photochemically produced transient reactants. In: Suffet I, McCarty PL (eds) Aquatic humic substances: influence on fate and treatment of pollutants. American Chemical Society, Washington, DC, pp 363–381

    Google Scholar 

  • Howsawkeng J, Watts RJ, Washington DL, Hess TH, Crawford RL (2001) Evidence for simultaneous abiotic-biotic oxidations in a microbial-Fenton’s system. Environ Sci Technol 35: 2961–2966

    CAS  Google Scholar 

  • Hozalski RM, Zhang L, Arnold WA (2001) Reduction of haloacetic acids by Fe(O): implications for treatment and fate. Environ Sci Technol 35: 2258–2263

    CAS  Google Scholar 

  • Huang K-C, Hoag GE, Chheda P, Woody BA, Dobbs GM (2002a) Chemical oxidation of trichloroethylene with potassium permanganate in porous medium. Adv Environ Res 7: 217–230

    CAS  Google Scholar 

  • Huang KC, Hoag GE, Chheda P, Woody BA, Dobbs GM (2002b) Kinetics and mechanism of oxidation of tetrachloroethylene with permanganate. Chemosphere 46: 815–825

    CAS  Google Scholar 

  • Hyde SM, Wood PM (1997) A mechanism for production of hydroxyl radicals by the brown-rot fungus Coniophora puteana: Fe(III) reduction by cellobiose dehydrogenase and Fe(II) oxidation at a distance from the hyphae. Microbiology 143: 259–266

    Google Scholar 

  • Izawa S, Inoue Y, Kimura A (1996) Importance of catalase in the adaptive response to hydrogen peroxide: analysis of acatalasaemic Saccharomyces cerevisiae. Biochem J 320: 61–67

    CAS  Google Scholar 

  • Jellison J, Chandhoke V, Goodell B, Fekete FA (1991) The isolation and immunolocalization of iron-binding compounds produced by Gloeophyllum trabeum. Appl Microbiol Biotechnol 35: 805–809

    CAS  Google Scholar 

  • Jensen KA, Houtman CJ, Ryan ZC, Hammel KE (2001) Pathways for extracellular Fenton chemistry in brown rot basidiomycete Gloeophyllum trabeum. Appl Environ Microbiol 67: 2705–2711

    CAS  Google Scholar 

  • Jensen KA, Ryan ZC, Wymelenberg AV, Cullen D, Hammel DE (2002) An NADH:quinone oxidoreductase active during biodegradation by brow-rot basidiomycete Gloeophyllum trabeum. Appl Environ Microbiol 68: 2699–2703

    CAS  Google Scholar 

  • Jiang JQ, Lloyd B (2002) Progress in the development and use of ferrate(VI) salt as an oxidant and coagulant for water and wastewater treatment. Water Res 36: 1397–1408

    CAS  Google Scholar 

  • Jordan CR, Dashek WV, Highley TL (1996) Detection and quantification of oxalic acid from brown-rot decay fungus Postia placenta. Holzforschung 50: 312–318

    CAS  Google Scholar 

  • Kazama F (1994) Inactivation of coliphage Q beta by potassium ferrate. FEMS Microbiol Lett 118: 345–349

    CAS  Google Scholar 

  • Kerem Z, Jensen KA, Hammel KE (1999) Biodegradative mechanism of the brown rot basidiomycete Gloeophyllum trabeum: evidence for an extracellular hydroquinonedriven Fenton reaction. FEBS Lett 446: 49–54

    CAS  Google Scholar 

  • Koenigs JW (1974a) Production of hydrogen peroxide by wood-rotting fungi in wood and its correlation to with weight loss, depolymerization and pH changes. Arch Microbiol 99: 129–145

    CAS  Google Scholar 

  • Koenigs JW (1974b) Hydrogen peroxide and iron: A proposed system for decomposition of wood by brown-rot basidiomycetes. Wood Fiber 6: 66–80

    Google Scholar 

  • Koyama O, Kamagata Y, Nakamura K (1994) Degradation of chlorinated aromatics by Fenton oxidation and methanogenic digester sludge. Water Res 28: 885–899

    Google Scholar 

  • Lampron KJ, Chiu PC, Cha DK (2001) Reductive dehalogenation of chlorinated ethenes with elemental iron: the role of microorganisms. Water Res 35: 3077–3084

    CAS  Google Scholar 

  • Lee J, Tryk DA, Fujishima A, Park SM (2002) Electrochemical generation of ferrate in acidic media at boron-doped diamond electrodes. Chem Commun (Camb) 7: 486–487

    Google Scholar 

  • Liochev SI (1999) The mechanism of “Fenton-like” reactions and their importance for biological systems. A biologist’s view. In: Sigel A, Sigel H (eds) Metals ions in biological systems, vol 36. Marcel Dekker, New York, pp 1–39

    Google Scholar 

  • Longhi P, Vodopivec B, Fiori G (2001) Electrochemical treatment of olive oil mill wastewater. Ann Chim 91: 169–174

    CAS  Google Scholar 

  • Lu MC (2000) Oxidation of chlorophenols with hydrogen peroxide in the presence of goethite. Chemosphere 40: 125–130

    CAS  Google Scholar 

  • MacKinnon LK, Thomson NR (2002) Laboratory-scale in situ chemical oxidation of a perchloroethylene pool using permanganate. J Contam Hydrol 56: 49–74

    CAS  Google Scholar 

  • Maillacheruvu K, Buck L, Lee E (2001) Biodegradation potential of photocatalyzed surfactant washwater. J Environ Sci Health Part A Tox Hazard Subst Environ Eng 36: 883–895

    CAS  Google Scholar 

  • Maki H, Sasaki T, Harayama S (2001) Photo-oxidation of biodegraded crude oil and toxicity of the photo-oxidized products. Chemosphere 44: 1145–1151

    CAS  Google Scholar 

  • Martens R, Wetzstein HG, Zadrazil F, Capelari M, Hoffmann P, Schmeer N (1996) Degradation of fluoroquinolone Enrofloxacin by wood-rotting fungi. Appl Environ Microbiol 62: 4206–4209

    CAS  Google Scholar 

  • Mau J-L, Chao G-R, Wu K-T (2001) Antioxidant properties of methanolic extracts from silver ear mushrooms. J Agric Food Chem 49: 5461–5467

    CAS  Google Scholar 

  • Mazur CS, Jones WJ (2001) Hydrogen concentrations in sulfate-reducing estuarine sediments during PCE dehalogenation. Environ Sci Technol 35: 4783–4788

    CAS  Google Scholar 

  • Mead JF (1976) Free radical mechanisms of lipid damage and consequences for cellular membranes. In: Pryor WA (ed) Free radicals in biology. Academic Press, New York, pp 51–68

    Google Scholar 

  • Morrison SJ, Metzler DR, Dwyer BP (2002) Removal of As, Mn, Mo, Se, U, V and Zn from groundwater by zero-valent iron in a passive treatment cell: reaction progress modeling. J Contam Hydrol 56: 99–116

    CAS  Google Scholar 

  • Nelson MD, Parker BL, Al TA, Cherry JA, Loomer D (2001) Geochemical reactions resulting from in situ oxidation of PCE-DNAPL by KMnO4 in a sandy aquifer. Environ Sci Technol 35: 1266–1275

    CAS  Google Scholar 

  • Neumann A, Siebert A, Trescher T, Reinhardt S, Wohlfarth G, Diekert G (2002) Tetrachloroethene reductive dehalogenase of Dehalospirillum multivorans: substrate specificity of the native enzyme and its corrinoid cofactor. Arch Microbiol 177: 420–426

    CAS  Google Scholar 

  • Newcombe D, Paszczynski A, Gajewska W, Kröger M, Crawford RL, Felis G (2002) Production of small molecular weight catalysts and the mechanism of trinitrotoluene degradation by several Gloeophyllum species. Enzyme Microb Technol 30: 506–517

    CAS  Google Scholar 

  • Norris RD, Dowd, KD (1994) In situ bioremediation of petroleum hydrocarbon-contaminated soil and groundwater in a low permeability aquifer. In: Flathman PE, Jerger DE, Exner JH (eds) Bioremediation: field experience, Lewis, Boca Raton, pp 457–474

    Google Scholar 

  • Pardieck DL, Bouwer EJ, Stone AT (1992) Hydrogen peroxide use to increase oxidant capacity for in situ bioremediation of contaminated soils and aquifers: a review. J Contam Hydrol 9: 221–242

    CAS  Google Scholar 

  • Paszczynski A, Crawford R, Funk D, Goodell B (1999) De novo synthesis of 4,5dimethoxycatechol and 2,5-dimethoxyhydroquinone by the brown rot fungus Gloeophyllum trabeum. Appl Environ Microbiol 65: 674–679

    CAS  Google Scholar 

  • Perey JR, Chiu PC, Huang CP, Cha DK (2002) Zero-valent iron pretreatment for enhancing the biodegradability of Azo dyes. Water Environ Res 74: 221–225

    CAS  Google Scholar 

  • Ravikumar JX, Gurol MD (1991) Effectiveness of chemical oxidation to enhance the biodegradation of pentachlorophenol in soils: a laboratory study. In: Neufeld RD, Casson LW (eds) Hazardous and industrial wastes. Proceedings of the 23rd Mid-Atlantic Industrial Waste Conference. Technomic Publishing, Lancaster, pp 211–221

    Google Scholar 

  • Rush JD, Cyr JE, Zhao Z, Bielski BH (1995) The oxidation of phenol by ferrate(VI) and ferrate(V). A pulse radiolysis and stopped-flow study. Free Radic Res 22: 349–360

    Google Scholar 

  • Sayer JA, Kierans M, Gadd GM (1997) Solubilization of some naturally occurring metal-bearing minerals, lime scale and lead phosphate by Aspergillus niger. FEMS Microbiol Lett 154: 29–35

    CAS  Google Scholar 

  • Scherer MM, Richter S, Valentine RL, Alvarez PJ (2000) Chemistry and microbiology of permeable reactive barriers for in situ groundwater clean up. Crit Rev Microbiol 26: 221–264

    CAS  Google Scholar 

  • Schlosser D, Fahr K, Karl W, Wetzstein, HG (2000) Hydroxylated metabolites of 2,4dichlorophenol imply a Fenton-type reaction in Gloeophyllum striatum. Appl Environ Microbiol 66: 2479–2483

    CAS  Google Scholar 

  • Schmidthalter DR, Canevascini G (1993) Isolation and characterization of cellobiose dehydrogenase from the brown-rot fungus Coniophora puteana ( Schum ex Fr) Karst. Arch Biochem Biophys 300: 559–563

    Google Scholar 

  • Scott JP, Ollis DF (1995) Integration of chemical and biological oxidation processes for water treatment: review and recommendations. Environ Prog 14: 88–103

    CAS  Google Scholar 

  • Shimada M, Akamtsu Y, Tokimatsu T, Mii K, Hattori T (1997) Possible biochemical roles of oxalic acid as a low molecular weight compound involved in brown-rot and white-rot wood decays. J Biotechnol 53: 103–113

    CAS  Google Scholar 

  • Spain JC, Milligan JD, Downey DC, Slaughter JK (1989) Excessive bacterial decomposition of H2O2 during enhanced biodegradation. Ground Water 27: 163–167

    CAS  Google Scholar 

  • Storz G, Christman MF, Sies H, Ames BN (1987) Spontaneous mutagenesis and oxidative damage to DNA in Salmonela typhimurium. Proc Natl Acad Sci USA 84: 8917–8921

    CAS  Google Scholar 

  • Tanaka H, Itakura S, Enoki A (1999a) Hydroxyl radical generation by an extracellular low-molecular-weight substance and phenol oxidase activity during wood degradation by the white-rot basidiomycete Trametes versicolor. J Biotechnol 75: 57–70

    CAS  Google Scholar 

  • Tanaka H, Itakura S, Enoki A (1999b) Hydroxyl radical generation by an extracellular low-molecular-weight substance and phenol oxidase activity during wood degradation by the white-rot basidiomycete Phanerochaete chrysosporium. Holzforschung 53: 21–28

    CAS  Google Scholar 

  • Tanaka H, Itakura S, Enoki A (2000) Phenol oxidase activity and one-electron oxidation activity in wood degradation by soft-rot deuteromycetes. Holzforschung 54: 463–468

    CAS  Google Scholar 

  • Thompson GW, Ockerman LT, Schreyer JM (1951) Preparation and purification of potassium ferrate IV. J Am Chem Soc 73: 1379–1381

    CAS  Google Scholar 

  • Tiehm A, Kohnagel I, Neis U (2001) Removal of chlorinated pollutants by a combination of ultrasound and biodegradation. Water Sci Technol 43: 297–303

    CAS  Google Scholar 

  • Tyre BW, Watts RJ, Miller GC (1991) Treatment of four biorefractory contaminants in soils using catalyzed hydrogen peroxide. J Environ Qual 20: 832–838

    CAS  Google Scholar 

  • Walling C (1975) Fenton’s reagent revised. Acta Chem Res 8: 125–131

    CAS  Google Scholar 

  • Watts RJ, Udell MD, Monsen RM (1993) Use of iron minerals in optimizing the peroxide treatment of contaminates soils. Water Environ Res 65: 839–844

    CAS  Google Scholar 

  • Wetzstein HG, Schmeer N, Karl W (1997) Degradation of the fluoroquinolone enrofloxacin by the brown rot fungus Gloeophyllum striatum: identification of metabolites. Appl Environ Microbiol 63: 4272–4281

    CAS  Google Scholar 

  • Wetzstein HG, Stadler M, Tichy HV, Dalhoff A, Karl W (1999) Degradation of ciprofloxacin by basidiomycetes and identification of metabolites generated by the brown rot fungus Gloeophyllum striatum. Appl Environ Microbiol 65: 1556–1563

    CAS  Google Scholar 

  • Winquist L, Rannug U, Rannug A, Ramel C (1984) Protection from toxic and mutagenic effects of H2O2 by catalase induction in Salmonella typhimurium. Mutat Res 141: 145–147

    CAS  Google Scholar 

  • Wolff SP, Garner A, Dean RT (1986) Free radicals, lipids and protein degradation. Trends Biochem Sci 11: 27–31

    CAS  Google Scholar 

  • Wood RH (1958) The heat, free energy and entropy of the ferrate (VI) ion. J Am Chem Soc 80: 2038–2041

    CAS  Google Scholar 

  • Xu G, Goodell B (2001) Mechanisms of wood degradation by brown-rot fungi: chelator-mediated cellulose degradation and binding of iron by cellulose. J Biotechnol 87: 43–57

    CAS  Google Scholar 

  • Yee DC, Chauhan S,Yankelevich E, Bystritskii VV, Wood TK (1998) Degradation of perchloroethylene and dichlorophenol by pulsed-electric discharge and bioremediation. Biotechnol Bioeng 59: 438–444

    CAS  Google Scholar 

  • Zhao J, Janse BJH (1996) Comparison of H202-producing enzymes in selected white rot fungi. FEMS Microbiol Lett 139: 215–221

    CAS  Google Scholar 

  • Zhu B-Z, Zhao H-T, Kalyanaraman B, Frei B (2002) Metal-independent production of hydroxyl radicals by halogenated quinones and hydrogen peroxide: an ESR spin rapping study. Free Rad Biol Med 32: 465–473

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Crawford, R.L., Hess, T.F., Paszczynski, A. (2004). Combined Biological and Abiological Degradation of Xenobiotic Compounds. In: Singh, A., Ward, O.P. (eds) Biodegradation and Bioremediation. Soil Biology, vol 2. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-06066-7_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-06066-7_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-05929-2

  • Online ISBN: 978-3-662-06066-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics