Skip to main content

Advertisement

Log in

ClpP Affects Biofilm Formation of Streptococcus mutans Differently in the Presence of Cariogenic Carbohydrates Through Regulating gtfBC and ftf

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

The abilities to form biofilms on teeth surface and to metabolize a wide range of carbohydrates are key virulence attributes of Streptococcus mutans. ClpP has been proved to play an important role in biofilm development in streptococci. Here we demonstrated that ClpP was involved in biofilm formation of S. mutans. ClpP inactivation resulted in enhanced biofilm formation or initial cell adherence in broth supplemented with sucrose, while reduced in broth supplemented with glucose or fructose. Our results also indicated that the enhanced capacities of biofilm formation and initial cell adherence were achieved through regulating the expression of a number of extracellular sucrose-metabolizing enzymes, such as glucosyltransferases (GTFB and GTFC) at early-exponential growth phase and fructosyltransferase at late-exponential growth phase in the presence of sucrose.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Chattoraj P, Banerjee A, Biswas S, Biswas I (2010) ClpP of Streptococcus mutans differentially regulates expression of genomic islands, mutacin production, and antibiotic tolerance. J Bacteriol 192(5):1312–1323

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Dougan DA, Mogk A, Bukau B (2002) Protein folding and degradation in bacteria: to degrade or not to degrade? That is the question. Cell Mol Life Sci 59(10):1607–1616

    Article  CAS  PubMed  Google Scholar 

  3. Goldberg AL (2003) Protein degradation and protection against misfolded or damaged proteins. Nature 426(6968):895–899

    Article  CAS  PubMed  Google Scholar 

  4. Hamada S, Slade HD (1980) Biology, immunology, and cariogenicity of Streptococcus mutans. Microbiol Rev 44(2):331–384

    PubMed Central  CAS  PubMed  Google Scholar 

  5. Hartl FU, Hayer-Hartl M (2009) Converging concepts of protein folding in vitro and in vivo. Nat Struct Mol Biol 16(6):574–581

    Article  CAS  PubMed  Google Scholar 

  6. Horaud T, Delbos F (1984) Viridans streptococci in infective endocarditis: species distribution and susceptibility to antibiotics. Eur Heart J 5(Suppl C):39–44

    Article  PubMed  Google Scholar 

  7. Ibrahim YM, Kerr AR, Silva NA, Mitchell TJ (2005) Contribution of the ATP-Dependent Protease ClpCP to the Autolysis and Virulence of Streptococcus pneumoniae. Infect Immun 73(2):730–740

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Kajfasz JK, Martinez AR, Rivera-Ramos I, Abranches J, Koo H, Quivey RG Jr, Lemos JA (2009) Role of Clp proteins in expression of virulence properties of Streptococcus mutans. J Bacteriol 191(7):2060–2068

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Koo H, Hayacibara MF, Schobel BD, Cury JA, Rosalen PL, Park YK, Vacca-Smith AM, Bowen WH (2003) Inhibition of Streptococcus mutans biofilm accumulation and polysaccharide production by apigenin and tt-farnesol. J Antimicrob Chemother 52(5):782–789

    Article  CAS  PubMed  Google Scholar 

  10. Kuramitsu HK, Wang BY (2006) Virulence properties of cariogenic bacteria. BMC Oral Health 6(Suppl 1):S11

    Article  PubMed Central  PubMed  Google Scholar 

  11. Lemos JA, Burne RA (2002) Regulation and physiological significance of ClpC and ClpP in Streptococcus mutans. J Bacteriol 184(22):6357–6366

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Lemos JA, Burne RA (2008) A model of efficiency: stress tolerance by Streptococcus mutans. Microbiology 154(Pt 11):3247–3255

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Loesche WJ (1986) Role of Streptococcus mutans in human dental decay. Microbiol Rev 50(4):353–380

    PubMed Central  CAS  PubMed  Google Scholar 

  14. Parsell DA, Lindquist S (1993) The function of heat-shock proteins in stress tolerance: degradation and reactivation of damaged proteins. Annu Rev Genet 27:437–496

    Article  CAS  PubMed  Google Scholar 

  15. Sauer RT, Bolon DN, Burton BM, Burton RE, Flynn JM, Grant RA, Hersch GL, Joshi SA, Kenniston JA, Levchenko I, Neher SB, Oakes ESC, Siddiqui SM, Wah DA, Baker TA (2004) Sculpting the proteome with AAA + proteases and disassembly machines. Cell 119(1):9–18

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Senadheera MD, Guggenheim B, Spatafora GA, Huang YC, Choi J, Hung DC, Treglown JS, Goodman SD, Ellen RP, Cvitkovitch DG (2005) A VicRK signal transduction system in Streptococcus mutans affects gtfBCD, gbpB, and ftf expression, biofilm formation, and genetic competence development. J Bacteriol 187(12):4064–4076

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Shemesh M, Tam A, Feldman M, Steinberg D (2006) Differential expression profiles of Streptococcus mutans ftf, gtf and vicR genes in the presence of dietary carbohydrates at early and late exponential growth phases. Carbohydr Res 341(12):2090–2097

    Article  CAS  PubMed  Google Scholar 

  18. Shemesh M, Tam A, Steinberg D (2007) Expression of biofilm-associated genes of Streptococcus mutans in response to glucose and sucrose. J Med Microbiol 56(Pt 11):1528–1535

    Article  CAS  PubMed  Google Scholar 

  19. Tam A, Shemesh M, Wormser U, Sintov A, Steinberg D (2006) Effect of different iodine formulations on the expression and activity of Streptococcus mutans glucosyltransferase and fructosyltransferase in biofilm and planktonic environments. J Antimicrob Chemother 57(5):865–871

    Article  CAS  PubMed  Google Scholar 

  20. Tamesada M, Kawabata S, Fujiwara T, Hamada S (2004) Synergistic effects of streptococcal glucosyltransferases on adhesive biofilm formation. J Dent Res 83(11):874–879

    Article  CAS  PubMed  Google Scholar 

  21. Waite RD, Papakonstantinopoulou A, Littler E, Curtis MA (2005) Transcriptome analysis of Pseudomonas aeruginosa growth: comparison of gene expression in planktonic cultures and developing and mature biofilms. J Bacteriol 187(18):6571–6576

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Yousefi B, Ghaderi S, Rezapoor-Lactooyi A, Amiri N, Verdi J, Shoae-Hassani A (2012) Hydroxy decenoic acid down regulates gtfB and gtfC expression and prevents Streptococcus mutans adherence to the cell surfaces. Ann Clin Microbiol Antimicrob 11:21

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Zhang J, Banerjee A, Biswas I (2009) Transcription of clpP is enhanced by a unique tandem repeat sequence in Streptococcus mutans. J Bacteriol 191(3):1056–1065

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank S. Hou for technical assistance and Q. Xu and H. Rao for critically reading the manuscript. This work was supported through funding from the National Natural Science Foundation of China (No. 81000762), the Natural Science Foundation (No. 2010D018) of Fujian Province, China.

Conflict of interest

The authors have no conflicts of interest to declare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jia-qin Zhang.

Additional information

Jia-qin Zhang and Xiang-hua Hou have contributed equally.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Jq., Hou, Xh., Song, Xy. et al. ClpP Affects Biofilm Formation of Streptococcus mutans Differently in the Presence of Cariogenic Carbohydrates Through Regulating gtfBC and ftf . Curr Microbiol 70, 716–723 (2015). https://doi.org/10.1007/s00284-015-0779-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-015-0779-9

Keywords

Navigation