Skip to main content
Log in

Bacterial Community Composition of Three Candidate Insect Vectors of Palm Phytoplasma (Texas Phoenix Palm Decline and Lethal Yellowing)

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Texas Phoenix Palm Decline (TPPD) and Lethal Yellowing are two phytoplasma-linked diseases in palms. The phytoplasma causing TPPD is thought to be transmitted by three putative planthopper vectors, Ormenaria rufifascia, Omolicna joi, and Haplaxius crudus. These insects have been morphologically and molecularly described, and have screened positive for Candidatus Phytoplasma palmae. Individuals from each species were subjected to 16S bacterial community sequencing using the Roche 454 platform, providing new information regarding the previously unexplored bacterial communities present in putative vectors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Andreotti R, de Leon A, Dowd S, Guerrero F, Bendele K, Scoles G (2011) Assessment of bacterial diversity in the cattle tick Rhipicephalus (Boophilus) microplus through tag-encoded pyrosequencing. BMC Microbiol 11:6. doi:10.1186/1471-2180-11-6

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Arp AP, Chapman R, Crossland JM, Bextine B (2013) Low-level detection of Candidatus Liberibacter solanacearum in Bactericera cockerelli (Hemiptera: Triozidae) by 16S rRNA Pyrosequencing. Environ Entomol 42(5):868–873. doi:10.1603/EN12260

    Article  CAS  PubMed  Google Scholar 

  3. Bai X, Zhang J, Ewing A, Miller S, Radek A, Shevchenko D, Tsukerman K, Walunas T, Lapidus A, Campbell J, Hogenhout S (2006) Living with genome instability: the adaptation of phytoplasmas to diverse environments of their insect and plant hosts. J Bacteriol 188(10):3682. doi:10.1128/JB.188.10.3682-3696.2006

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Buchner P (1965) Endosymbiosis of animals with plant microorganisms. Interscience, New York

    Google Scholar 

  5. Bourtzis K (2008) Wolbachia-based technologies for insect pest population control. Transgenesis and the management of vector-borne disease, vol 627. Springer, New York, pp 104–113

    Book  Google Scholar 

  6. Caporaso J, Kuczynski J, Stombaugh J, Bittinger K (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7:335–336. doi:10.1038/nmeth.f.303

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Carpi G, Cagnacci F, Wittekindt N, Zhao F, Qi J, Tomsho L, Drautz D, Rizzoli A, Schuster S (2011) Metagenomic profile of the bacterial communities associated with Ixodes ricinus ticks. PLoS One 6:e25604. doi:10.1371/journal.pone.0025604

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Caspi-Fluger A, Moshe I, Mozes-Daube N, Katzir N, Portnoy V, Belausov E, Hunter M, Zchori-Fein E (2011) Horizontal transmission of the insect symbiont Rickettsia is plant-mediated. Proc Biol Sci. doi:10.1098/rspb.2011.2095

    PubMed Central  PubMed  Google Scholar 

  9. Chandler J, Lang J, Bhatnagar S, Eisen J, Kopp A (2011) Bacterial communities of diverse Drosophila species: Ecological context of a host-microbe model system. PLoS Genet. 7(9):e1002272. doi:10.1371/journal.pgen.1002272

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Clay K, Klyachko O, Grindle N, Civitello D, Oleske D, Fuqua C (2008) Microbial communities and interactions in the lone star tick. Amblyomma Am Ecol 17:4371–4381. doi:10.1111/j.1365-294X.2008.03914.x

    CAS  Google Scholar 

  11. Cline MS, Smoot M, Cerami E, Kuchinsky A (2007) Integration of biological networks and gene expression data using Cytoscape. Nat Protoc 2:2366–2382. doi:10.1038/nprot.2007.324

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Dowd SE, Wolcott RD, Sun Y, McKeehan T, Smith E (2008) Polymicrobial nature of chronic diabetic foot ulcer biofilm infections determined using bacterial tag encoded FLX amplicon pyrosequencing (bTEFAP). PLoS One 3(10):e3326. doi:10.1371/journal.pone.0003326

    Article  PubMed Central  PubMed  Google Scholar 

  13. Dowd SE, Sun Y, Wolcott RD, Domingo A, Carroll JA (2008) Bacterial tag-encoded FLX amplicon pyrosequencing (bTEFAP) for microbiome studies: bacterial diversity in the ileum of newly weaned Salmonella-infected pigs. Foodborne Pathog Dis 5(4):459–472. doi:10.1089/fpd.2008.0107

    Article  CAS  PubMed  Google Scholar 

  14. Dowd S, Callaway T, Wolcott R, Sun Y (2008) Evaluation of the bacterial diversity in the feces of cattle using 16S rDNA bacterial tag-encoded FLX amplicon pyrosequencing (bTEFAP). BMC Microbiol 8:125. doi:10.1186/1471-2180-8-125

    Article  PubMed Central  PubMed  Google Scholar 

  15. Duron O, Wilkes T, Hurst G (2010) Interspecific transmission of a male-killing bacterium on an ecological timescale. Ecol Lett 13:1139–1148. doi:10.1111/j.1461-0248.2010.01502.x

    Article  PubMed  Google Scholar 

  16. Fein E, Perlman S (2004) Distribution of the bacterial symbiont Cardinium in arthropods. Mol Ecol. doi:10.1046/j.1365-294X.2004.02203.x

    Google Scholar 

  17. Firrao G, Carraro L, Gobbi E, Locci R (1996) Molecular characterization of a phytoplasma causing Phyllody in clover and other herbaceous hosts in Northern Italy. Eur J Plant Pathol 102:817–822. doi:10.1007/BF01877050

    Article  CAS  Google Scholar 

  18. Hail D, Dowd SE, Bextine B (2012) Identification and location of symbionts associated with potato psyllid (Bactericera cockerelli) lifestages. env. entom. 41:98–107. doi:10.1603/EN11198

    Article  Google Scholar 

  19. Hail D, Lauziere I, Dowd S, Bextine B (2011) Culture independent survey of the microbiota of the glassy-winged sharpshooter (Homalodisca vitripennis) using 454 pyrosequencing. Environ Entomol 40:23–29. doi:10.1603/EN10115

    Article  PubMed  Google Scholar 

  20. Halbert S, Wilson SW, Bextine BR, Youngblood SB (2014) Potential planthopper vectors of palm phytoplasmas in Florida with a description of a new species of the genus Omolicna (Hemiptera: Fulgoroidea). Fla Entomol 97:90–97. doi:10.1896/054.097.0112

    Article  Google Scholar 

  21. Harrison N, Helmick E, Elliott M (2008) Lethal yellowing type diseases of palms associated with phytoplasmas newly identified in Florida, USA. Ann Appl Biol 153:85–94. doi:10.1111/j.1744-7348.2008.00240.x

    Article  CAS  Google Scholar 

  22. Harrison N, Oropeza C (2008) Coconut lethal yellowing. Characterization, diagnosis, and management of phytoplasmas. pp 219–248

  23. Howard W (1980) Lethal yellowing transmission experiments with Haplaxius crudus. Oleagineux 1980(35):300

    Google Scholar 

  24. Howard F, Norris RC, Thomas DL (1983) Evidence of transmission of palm lethal yellowing agent by a planthopper, Myndus crudus (Homoptera, Cixiidae). J Trop Agric 60:168–171

    Google Scholar 

  25. Himler A, Adachi-Hagimori T, Bergen JE, Kozuch A, Kelly S, Tabashnik B, Chiel E, Duckworth V, Dennehy T, Zchori-Fein E, Hunter M (2011) Rapid spread of a bacterial symbiont in an invasive whitefly is driven by fitness benefits and female bias. Sci. 332(6026):254–256. doi:10.1126/science.1199410

    Article  CAS  Google Scholar 

  26. Hurst G, Jiggins F (2000) Male-killing bacteria in insects: mechanisms, incidence, and implications. Emerg Infect Dis 6(4):329–336. doi:10.3201/eid0604.000402

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Ishii Y, Matsuura Y, Kakizawa S, Nikoh N, Fukatsu T (2013) Diversity of bacterial endosymbionts associated with macrosteles leafhoppers vectoring phytopathogenic phytoplasmas. Appl Environ Microbiol 79:5013–5022. doi:10.1128/AEM.01527-13

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Jaenike J, Unckless R, Cockburn S, Boelio L, Perlman S (2010) Adaptation via symbiosis: recent spread of a Drosophila defensive symbiont. Sci. 329(5988):212–215. doi:10.1126/science.1188235

    Article  CAS  Google Scholar 

  29. Kambris Z, Cook P, Phuc H, Sinkins S (2009) Immune activation by life-shortening Wolbachia and reduced filarial competence in mosquitoes. Science 326:134–136. doi:10.1126/science.1177531

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Lee I, Davis R, Gundersen-Rindal D (2000) Phytoplasma: phytopathogenic mollicutes. Annu Rev Microbiol 2000(54):221–255. doi:10.1146/annurev.micro.54.1.221

    Article  Google Scholar 

  31. Maust B, Espadas F, Talavera C, Aguilar M, Santamaría J, Oropeza C (2003) Changes in carbohydrate metabolism in coconut palms infected with the lethal yellowing phytoplasma. Phytopathology 93:976–981. doi:10.1094/PHYTO.2003.93.8.976

    Article  CAS  PubMed  Google Scholar 

  32. Moran N, McCutcheon J, Nakabachi A (2008) Genomics and evolution of heritable bacterial symbionts. Annu Rev Genet 42:165–190. doi:10.1146/annurev.genet.41.110306.130119

    Article  CAS  PubMed  Google Scholar 

  33. Moran N, Tran P, Gerardo N (2005) Symbiosis and insect diversification: an ancient symbiont of sap-feeding insects from the bacterial phylum Bacteroidetes. Appl Environ Microbiol 71(12):8802–8810. doi:10.1128/AEM.71.12.8802-8810.2005

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Nakamura Y, Kawai S, Yukuhiro F, Ito S, Gotoh T, Kisimoto R, Yukuhiro T, Kageyama D, Noda H (2009) Prevalence of cardinium bacteria in planthoppers and spider mites and taxonomic revision of “Candidatus Cardinium hertigii” based on detection of a new cardinium group from biting midges. Appl Environ Microbiol 75:6757–6763. doi:10.1128/AEM.01583-09

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Nováková E, Hypša V, Moran N (2009) Arsenophonus, an emerging clade of intracellular symbionts with a broad host distribution. BMC Microbiol 9:143. doi:10.1186/1471-2180-9-143

    Article  PubMed Central  PubMed  Google Scholar 

  36. Park D, Foottit R, Maw E, Hebert P (2011) Barcoding bugs: dna-based identification of the true bugs (Insecta: Hemiptera: Heteroptera). PLoS One 6:e18749. doi:10.1371/journal.pone.0018749

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Powell C, Hanson J, Bextine B (2014) Bacterial community survey of Solenopsis invicta Buren (red imported fire ant) colonies in the presence and absence of Solenopsis invicta virus (SINV). Microbiol, Curr. doi:10.1007/s00284-014-0626-4

    Google Scholar 

  38. Tran-Nguyen L, Kube M, Schneider B, Reinhardt R, Gibb K (2008) Comparative genome analysis of ‘‘ Candidatus Phytoplasma australiense’’ (Subgroup tuf-Australia I; rp-A) and ‘‘Ca. Phytoplasma asteris’’ Strains OY-M and AY-WB. J Bacteriol 190(11):3979. doi:10.1128/JB.01301-07

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Vázquez-Euán R, Harrison N, Narvaez M, Oropeza C (2011) Occurrence of a 16SrIV group phytoplasma not previously associated with palm species in Yucatan, Mexico. Plant Dis 95:256–262. doi:10.1094/PDIS-02-10-0150

    Article  Google Scholar 

  40. Wang Q, Garrity GM, Tiedje JM, Cole JR (2007) Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol 73:5261–5267. doi:10.1128/AEM.00062-07

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Weintraub P, Beanland L (2006) Insect vectors of phytoplasmas. Annu Rev Entomol 2006(51):91–111. doi:10.1146/annurev.ento.51.110104.151039

    Article  Google Scholar 

  42. Wei W, Davis R, Lee I, Zhao Y (2007) Computer-simulated RFLP analysis of 16S rRNA genes: identification of ten new phytoplasma groups. Int J Syst Evol Microbiol 57:1855–1867. doi:10.1099/ijs.0.65000-0

    Article  CAS  PubMed  Google Scholar 

  43. Wilkes T, Darby A, Choi J et al (2010) The draft genome sequence of Arsenophonus nasoniae, son-killer bacterium of Nasonia vitripennis, reveals genes associated with virulence and symbiosis. Insect Mol Biol 19:59–73. doi:10.1111/j.1365-2583.2009.00963.x

    Article  CAS  PubMed  Google Scholar 

  44. Yadav A, Bhale U, Thorat V, Shouche Y (2014) First report of new subgroup 16SrII-M ‘Candidatus Phytoplasma aurantifolia’ associated with ‘Witches Broom’ disease of Tephrosia purpurea in India. Plant Dis. doi:10.1094/PDIS-11-13-1183-PDN

    Google Scholar 

  45. Zabalou S, Riegler M, Theodorakopoulou M, Stauffer C, Savakis C, Bourtzis K, Law JH (2004) Wolbachia-induced cytoplasmic incompatibility as a means for insect pest population control. PNAS 101:15042–15045

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Susan B. Youngblood, J. Eddie Anderson, and Anthony A. Dickens, Florida Department of Agriculture and Consumer Services, Division of Plant Industry, for help with insect collection in Florida.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Blake R. Bextine.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Powell, C.M., Hail, D., Potocnjak, J. et al. Bacterial Community Composition of Three Candidate Insect Vectors of Palm Phytoplasma (Texas Phoenix Palm Decline and Lethal Yellowing). Curr Microbiol 70, 240–245 (2015). https://doi.org/10.1007/s00284-014-0709-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-014-0709-2

Keywords

Navigation