Skip to main content

Advertisement

Log in

Detection of Biofilm Production and Antibiotic Resistance Pattern in Clinical Isolates from Indwelling Medical Devices

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Microbial biofilms pose great threat for patients requiring indwelling medical devices (IMDs) as it is difficult to remove them. It is, therefore, crucial to follow an appropriate method for the detection of biofilms. The present study focuses on detection of biofilm formation among the isolates from IMDs. We also aimed to explore the antibiogram of biofilm producers. This prospective analysis included 65 prosthetic samples. After isolation and identification of bacteria following standard methodology, antibiogram of the isolates were produced following Kirby–Bauer disc diffusion method. Detection of biofilms was done by tube adherence (TA), Congo red agar and tissue culture plate (TCP) methods. Out of 67 clinical isolates from IMDs, TCP detected 31 (46.3 %) biofilm producers and 36 (53.7 %) biofilm non-producers. Klebsiella pneumoniae, Pseudomonas aeruginosa and Burkholderia cepacia complex were found to be the most frequent biofilm producers. The TA method correlated well with the TCP method for biofilm detection. Higher antibiotic resistance was observed in biofilm producers than in biofilm non-producers. The most effective antibiotics for biofilm producing Gram-positive isolates were Vancomycin and Tigecycline, and that for biofilm producing Gram-negative isolates were Polymyxin-B, Colistin Sulphate and Tigecycline. Nearly 46 % of the isolates were found to be biofilm producers. The antibiotic susceptibility pattern in the present study showed Amoxicillin to be an ineffective drug for isolates from the IMDs. For the detection of biofilm production, TA method can be an economical and effective alternative to TCP method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Adams-Haduch JM, Paterson DL, Sidjabat HE, Pasculle AW, Potoski BA, Muto CA, Harrison LH, Doi Y (2008) Genetic basis of multidrug resistance in Acinetobacter baumannii clinical isolates at a tertiary medical center in Pennsylvania. Antimicrob Agents Chemother 52(11):3837–3843. doi:10.1128/AAC.00570-08

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Agarwal RK, Singh S, Bhilegaonkar KN, Singh VP (2011) Optimization of microtitre plate assay for the testing of biofilm formation ability in different Salmonella serotypes. Int Food Res J 18(4):1493–1498

    Google Scholar 

  3. Christensen GD, Simpson WA, Bisno AL, Beachey EH (1982) Adherence of slime-producing strains of Staphylococcus epidermidis to smooth surfaces. Infect Immun 37(1):318–326

    CAS  PubMed Central  PubMed  Google Scholar 

  4. Christensen GD, Simpson WA, Younger JJ, Baddour LM, Barrett FF, Melton DM, Beachey EH (1985) Adherence of coagulase-negative Staphylococci to plastic tissue culture plates: a quantitative model for the adherence of Staphylococci to medical devices. J Clin Microbiol 22(6):996–1006

    CAS  PubMed Central  PubMed  Google Scholar 

  5. Clinical and Laboratory Standards Institute (2007) Performance standards for antimicrobial susceptibility testing. In: 17th informational supplement. CLSI, Wayne, pp M100–S17

  6. de Castro MP, Ferreira LM, Filho AN, Zafalon LF, Vicente HI, de Souza V (2013) Comparison of methods for the detection of biofilm formation by Staphylococcus aureus isolated from bovine subclinical mastitis. Braz J Microbiol 44(1):119–124. doi:10.1590/S1517-83822013005000031

    Article  Google Scholar 

  7. Desrousseaux C, Sautou V, Descamps S, Traore O (2013) Modification of the surfaces of medical devices to prevent microbial adhesion and biofilm formation. J Hosp Infect 85(2):87–93. doi:10.1016/j.jhin.2013.06.015

    Article  CAS  PubMed  Google Scholar 

  8. Donlan RM (2001) Biofilms and device-associated infections. Emerg Infect Dis 7(2):277–281. doi:10.3201/eid0702.700277

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Donlan RM, Costerton JW (2002) Biofilms: survival mechanisms of clinically relevant microorganisms. Clin Microbiol Rev 15(2):167–193

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Freeman DJ, Falkiner FR, Keane CT (1989) New method for detecting slime production by coagulase negative Staphylococci. J Clin Pathol 42(8):872–874

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Hassan A, Usman J, Kaleem F, Omair M, Khalid A, Iqbal M (2011) Evaluation of different detection methods of biofilm formation in the clinical isolates. Braz J Infect Dis 15(4):305–311

    Article  PubMed  Google Scholar 

  12. Isenberg HD (2004) Clinical microbiology procedures handbook, 2nd edn. American Society of Microbiology, Washington, DC

    Google Scholar 

  13. Kaiser TD, Pereira EM, Dos Santos KR, Maciel EL, Schuenck RP, Nunes AP (2013) Modification of the Congo red agar method to detect biofilm production by Staphylococcus epidermidis. Diagn Microbiol Infect Dis 75(3):235–239. doi:10.1016/j.diagmicrobio.2012.11.014

    Article  CAS  PubMed  Google Scholar 

  14. Kim J, Park HD, Chung S (2012) Microfluidic approaches to bacterial biofilm formation. Molecules 17(8):9818–9834. doi:10.3390/molecules17089818

    Article  CAS  PubMed  Google Scholar 

  15. Mariana NS, Salman SA, Neela V, Zamberi S (2009) Evaluation of modified Congo red agar for detection of biofilm produced by clinical isolates of methicillin–resistance Staphylococcus aureus. Afr J Microbiol Res 3(6):330–338

    CAS  Google Scholar 

  16. Mathur T, Singhal S, Khan S, Upadhyay DJ, Fatma T, Rattan A (2006) Detection of biofilm formation among the clinical isolates of Staphylococci: an evaluation of three different screening methods. Indian J Med Microbiol 24(1):25–29

    Article  CAS  PubMed  Google Scholar 

  17. Mekni MA, Bouchami O, Achour W, Ben Hassen A (2012) Strong biofilm production but not adhesion virulence factors can discriminate between invasive and commensal Staphylococcus epidermidis strains. APMIS 120(8):605–611. doi:10.1111/j.1600-0463.2012.02877.x

    Article  CAS  PubMed  Google Scholar 

  18. Merritt JH, Kadouri DE, O’Toole GA (2005) Growing and analyzing static biofilms. Curr Protoc Microbiol Chapter 1:Unit 1B 1. doi:10.1002/9780471729259.mc01b01s00

  19. Niveditha S, Pramodhini S, Umadevi S, Kumar S, Stephen S (2012) The isolation and the biofilm formation of uropathogens in the patients with catheter associated urinary tract infections (UTIs). J Clin Diagn Res 6(9):1478–1482. doi:10.7860/JCDR/2012/4367.2537

    CAS  PubMed Central  PubMed  Google Scholar 

  20. Oliveira A, Cunha Mde L (2010) Comparison of methods for the detection of biofilm production in coagulase-negative Staphylococci. BMC Res Notes 3:260. doi:10.1186/1756-0500-3-260

    Article  PubMed Central  PubMed  Google Scholar 

  21. O’Toole GA (2011) Microtiter dish biofilm formation assay. J Vis Exp 47. doi:10.3791/2437

  22. Singhai M, Malik A, Shahid M, Malik MA, Goyal R (2013) A study on device-related infections with special reference to biofilm production and antibiotic resistance. J Glob Infect Dis 4(4):193–198. doi:10.4103/0974-777X.103896

    Article  Google Scholar 

  23. Stepanovic S, Vukovic D, Hola V, Di Bonaventura G, Djukic S, Cirkovic I, Ruzicka F (2007) Quantification of biofilm in microtiter plates: overview of testing conditions and practical recommendations for assessment of biofilm production by Staphylococci. APMIS 115(8):891–899. doi:10.1111/j.1600-0463.2007.apm_630.x

    Article  PubMed  Google Scholar 

  24. Subramanian P, Shanmugam N, Sivaraman U, Kumar S, Selvaraj S (2012) Antiobiotic resistance pattern of biofilm-forming uropathogens isolated from catheterised patients in Pondicherry, India. Australas Med J 5(7):344–348. doi:10.4066/AMJ.2012.1193

    Article  PubMed Central  PubMed  Google Scholar 

  25. Taj Y, Essa F, Aziz F, Kazmi SU (2012) Study on biofilm-forming properties of clinical isolates of Staphylococcus aureus. J Infect Dev Ctries 6(5):403–409

    Article  PubMed  Google Scholar 

  26. Trautner BW, Darouiche RO (2004) Role of biofilm in catheter-associated urinary tract infection. Am J Infect Control 32(3):177–183. doi:10.1016/j.ajic.2003.08.005

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shyam Kumar Mishra.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mishra, S.K., Basukala, P., Basukala, O. et al. Detection of Biofilm Production and Antibiotic Resistance Pattern in Clinical Isolates from Indwelling Medical Devices. Curr Microbiol 70, 128–134 (2015). https://doi.org/10.1007/s00284-014-0694-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-014-0694-5

Keywords

Navigation