Skip to main content
Log in

Genetically Engineered Lactobacillus plantarum WCFS1 Constitutively Secreting Heterologous Oxalate Decarboxylase and Degrading Oxalate Under In Vitro

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Hyperoxaluria is a major risk factor for urinary stone disease, where calcium oxalate (CaOx) is the most prevalent type of kidney stones. Systemic treatments of CaOx kidney stone patients are limited and comprise drawbacks including recurrence of stone formation and kidney damages. In the present work Lactobacillus plantarum (L. plantarum) was engineered to constitutively secrete oxalate decarboxylase (OxdC) for the degradation of intestinal oxalate. The homologous promoter PldhL and signal peptide Lp_0373 of L. plantarum were used for constructing recombinant vector pLdhl0373OxdC. Results showed that homologous promoter PldhL and signal peptide Lp_0373 facilitated the production, secretion, and functional expression of OxdC protein in L. plantarum. SDS-PAGE analysis revealed that 44 kDa protein OxdC was seen exceptionally in the culture supernatant of recombinant L. plantarum (WCFS1OxdC) harboring the plasmid pLdhl0373OxdC.The culture supernatant of L. plantarum WCFS1OxdC showed OxdC activity of 0.06 U/mg of protein, whereas no enzyme activity was observed in the supernatant of the wild type WCFS1 and the recombinant NC8OxdC strains. The purified recombinant OxdC from the WCFS1OxdC strain showed an activity of 19.1 U/mg protein. The recombinant L. plantarum strain secreted 25 % of OxdC protein in the supernatant. The recombinant strain degraded more than 70 % of soluble oxalate in the culture supernatant. Plasmid segregation analysis revealed that the recombinant strain lost almost 70–89 % of plasmid in 42nd and 84th generation, respectively. In conclusion, recombinant L. plantarum strain containing plasmid pLdhl0373OxdC showed constitutive secretion of bioactive OxdC and also capable of degrading externally available oxalate under in vitro conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Anbazhagan K, Sasikumar P, Gomathi S, Priya HP, Selvam GS (2013) In vitro degradation of oxalate by recombinant Lactobacillus plantarum expressing heterologous oxalate decarboxylase. J Appl Microbiol 115(3):880–887

    Article  PubMed  CAS  Google Scholar 

  2. Asplin JR (2002) Hyperoxaluric calcium nephrolithiasis. Endocrinol Metab Clin N Am 31(4):927–949

    Article  CAS  Google Scholar 

  3. Aukrust TW, Brurberg MB, Nes IF (1995) Transformation of Lactobacillus by electroporation. Methods Mol Biol 47:201–208

    PubMed  CAS  Google Scholar 

  4. Curhan GC, Willett WC, Speizer FE, Stampfer MJ (2001) Twenty-four-hour urine chemistries and the risk of kidney stones among women and men. Kidney Int 59(6):2290–2298

    PubMed  CAS  Google Scholar 

  5. Ferain T, Garmyn D, Bernard N, Hols P, Delcour J (1994) Lactobacillus plantarum ldhL gene: overexpression and deletion. J Bacteriol 176:596–601

    PubMed  CAS  PubMed Central  Google Scholar 

  6. Hatch M, Cornelius J, Allison M, Sidhu H, Peck A, Freel RW (2006) Oxalobacter sp. reduces urinary oxalate excretion by promoting enteric oxalate secretion. Kidney Int 69(4):691–698

    Article  PubMed  CAS  Google Scholar 

  7. Hols P, Ferain T, Garmyn D, Bernard N, Delcour J (1994) Use of homologous expression-secretion signals and vector-free stable chromosomal integration in engineering of Lactobacillus plantarum for alpha-amylase and levanase expression. Appl Environ Microbiol 60:1401–1413

    PubMed  CAS  PubMed Central  Google Scholar 

  8. Hoppe B, Beck B, Gatter N, von Unruh G, Tischer A, Hesse A, Laube N, Kaul P, Sidhu H (2006) Oxalobacter formigenes: a potential tool for the treatment of primary hyperoxaluria type 1. Kidney Int 70(7):1305–1311

    Article  PubMed  CAS  Google Scholar 

  9. Hoppe B, Leumann E, Von Unruh G, Laube N, Hesse A (2003) Diagnostic and therapeutic approaches in patients with secondary hyperoxaluria. Front Biosci 8:e437–e443

    Article  PubMed  CAS  Google Scholar 

  10. Kleerebezem M, Boekhorst J, van Kranenburg R, Molenaar D, Kuipers OP, Leer R, Tarchini R, Peters SA, Sandbrink HM, Fiers MW, Stiekema W, Lankhorst RM, Bron PA, Hoffer SM, Groot MN, Kerkhoven R, de Vries M, Ursing B, de Vos WM, Siezen RJ (2003) Complete genome sequence of Lactobacillus plantarum WCFS1. Proc Natl Acad Sci USA 100(4):1990–1995

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  11. Kolandaswamy A, George L, Sadasivam S (2009) Heterologous expression of oxalate decarboxylase in Lactobacillus plantarum NC8. Curr Microbiol 58:117–121

    Article  PubMed  CAS  Google Scholar 

  12. Kumar R, Mukherjee M, Bhandari M, Kumar A, Sidhu H, Mittal RD (2002) Role of Oxalobacter formigenes in calcium oxalate stone disease: a study from North India. Eur Urol 41:318

    Article  PubMed  CAS  Google Scholar 

  13. Kwak C, Kim HK, Kim EC, Choi MS, Kim HH (2003) Urinary oxalate levels and the enteric bacterium Oxalobacter formigenes in patients with calcium oxalate urolithiasis. Eur Urol 44(4):475–481

    Article  PubMed  CAS  Google Scholar 

  14. Laemmli U (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  PubMed  CAS  Google Scholar 

  15. Leumann E, Hoppe B (2001) The primary hyperoxalurias. J Am Soc Nephrol 12(9):1986–1993

    PubMed  CAS  Google Scholar 

  16. Lieske JC, Tremaine WJ, De Simone C, O’Connor HM, Li X, Bergstralh EJ, Goldfarb DS (2010) Diet, but not oral probiotics, effectively reduces urinary oxalate excretion and calcium oxalate supersaturation. Kidney Int 78(11):1178–1185

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  17. Mathiesen G, Sveen A, Brurberg MB, Fredriksen L, Axelsson L, Eijsink VGH (2009) Genome–wide analysis of signal peptide functionality in Lactobacillus plantarum WCFS1. BMC Genomics 10:425

    Article  PubMed  PubMed Central  Google Scholar 

  18. Mathiesen G, Sveen A, Piard JC, Axelsson L, Eijsink VGH (2008) Heterologous protein secretion by Lactobacillus plantarum using homologous signal peptides. J Appl Microbiol 105:215–226

    Article  PubMed  CAS  Google Scholar 

  19. Mikami K, Akakura K, Takei K, Ueda T, Mizoguchi K, Noda M, Miyake M, Ito H (2003) Association of absence of intestinal oxalate degrading bacteria with urinary calcium oxalate stone formation. Int J Urol 10(6):293–296

    Article  PubMed  Google Scholar 

  20. Nguyen TT, Mathiesen G, Fredriksen L, Kittl R, Nguyen TH, Eijsink VGH, Haltrich D, Peterbauer CK (2011) A food-grade system for inducible gene expression in Lactobacillus plantarum using an alanine racemase-encoding selection marker. J Agric Food Chem 59:5617–5624

    Article  PubMed  CAS  Google Scholar 

  21. Sambrook J, Russell DW (2001) Plasmid and their usefulness in molecular cloning. Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory Press, New York, pp 1.1–1.142

    Google Scholar 

  22. Sasikumar P, Gomathi S, Anbazhagan K (2013), Selvam GS (2013) Secretion of biologically active heterologous oxalate decarboxylase (OxdC) in Lactobacillus plantarum WCFS1 using homologous signal peptides. Biomed Res Int 2013:280432

    Article  PubMed  PubMed Central  Google Scholar 

  23. Sidhu H, Allison MJ, Chow JM, Clark A, Peck AB (2001) Rapid reversal of hyperoxaluria in a rat model after probiotic administration of Oxalobacter formigenes. J Urol 166(4):1487–1491

    Article  PubMed  CAS  Google Scholar 

  24. Sidhu H, Hoppe B, Hesse A, Tenbrock K, Brömme S, Rietschel E, Peck AB (1998) Absence of Oxalobacter formigenes in cystic fibrosis patients: a risk factor for hyperoxaluria. Lancet 352(9133):1026–1029

    Article  PubMed  CAS  Google Scholar 

  25. Siener R, Bangen U, Sidhu H, Hönow R, von Unruh G, Hesse A (2013) The role of Oxalobacter formigenes colonization in calcium oxalate stone disease. Kidney Int 83(6):1144–1149

    Article  PubMed  CAS  Google Scholar 

  26. Siener R, Bade DJ, Hesse A, Hoppe B (2013) Dietary hyperoxaluria is not reduced by treatment with lactic acid bacteria. J Transl Med 11(306):24330782

    Google Scholar 

  27. Sinha MK, Collazo-Clavell ML, Rule A, Milliner DS, Nelson W, Sarr MG, Kumar R, Lieske JC (2007) Hyperoxaluric nephrolithiasis is a complication of Roux-en-Y gastric bypass surgery. Kidney Int 72(1):100–107

    Article  PubMed  CAS  Google Scholar 

  28. Stamatelou KK, Francis ME, Jones CA, Nyberg LM, Curhan GC (2003) Time trends in reported prevalence of kidney stones in the United States: 1976–1994. Kidney Int 63(5):1817–1823

    Article  PubMed  Google Scholar 

  29. Tanner A, Bornemann S (2000) Bacillus subtilis YvrK is an acid-induced oxalate decarboxylase. J Bacteriol 182(18):5271–5273

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  30. Terribile M, Capuano M, Cangiano G, Carnovale V, Ferrara P, Petrarulo M, Marangella M (2006) Factors increasing the risk for stone formation in adult patients with cystic fibrosis. Nephrol Dial Transplant 21(7):1870–1875

    Article  PubMed  CAS  Google Scholar 

  31. Xu W, Huang M, Zhang Y, Yi X, Dong W, Gao X, Jia C (2011) Novel surface display system for heterogonous proteins on Lactobacillus plantarum. Lett Appl Microbiol 53:641–648

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors express their gratitude to Dr. Geir Mathiesen, Norwegian University of Life Sciences, Norway for providing plasmids pLP_3050AmyA and pLP_0373AmyA. Prof. Michiel Kleerebezem, Wageningen, Centre for Food Sciences, The Netherlands for providing the strain L. plantarum WCFS1. Authors also wish to thank Dr. Stephen Bornemann, John Innes Centre, United Kingdom, for providing the plasmid pLB36 consisting oxdC gene. This work was supported by the University Grants Commission (UGC), New Delhi, India and the Department of Biotechnology through IPLS program. Authors also thank UGC for the central instrumentation facility at SBS, MKU through CEGS, CAS ,and NRCBS programs.

Conflict of interest

The authors have no conflict of interest to declare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Govindan Sadasivam Selvam.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sasikumar, P., Gomathi, S., Anbazhagan, K. et al. Genetically Engineered Lactobacillus plantarum WCFS1 Constitutively Secreting Heterologous Oxalate Decarboxylase and Degrading Oxalate Under In Vitro. Curr Microbiol 69, 708–715 (2014). https://doi.org/10.1007/s00284-014-0644-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-014-0644-2

Keywords

Navigation