Skip to main content

Advertisement

Log in

Cell Envelope Phospholipid Composition of Burkholderia multivorans

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Burkholderia multivorans causes opportunistic pulmonary infections in cystic fibrosis and immunocompromised patients. The purpose of the present study was to determine the nature of the phospholipids and their fatty acid constituents comprising the cell envelope membranes of strains isolated from three disparate sources. A conventional method for obtaining the readily extractable lipids fraction from bacteria was employed to obtain membrane lipids for thin-layer chromatographic and gas chromatography-mass spectrophotometric analyses. Major fatty acid components of the B. multivorans readily extractable lipid fractions included C16:0 (palmitic acid), C16:1 (palmitoleic acid), and C18:1 (oleic acid), while C14:0 (myristic acid), ΔC17:0 (methylene hexadecanoic acid), C18:0 (stearic acid), and ΔC19:0 (methylene octadecanoic acid) were present in lesser amounts. Fatty acid composition differed quantitatively among strains with regard to C16:0, C16:1, ΔC17:0, C18:1, and ΔC19:0 with the unsaturated:saturated fatty acid ratios being significantly less in a cystic fibrosis type strain than either environmental or chronic granulomatous disease strains. Phospholipids identified in all B. multivorans strains included lyso-phosphatidylethanolamine, phosphatidylglycerol, phosphatidylethanolamine, and diphosphatidylglycerol in similar ratios. These data support the conclusion that the cell envelope phospholipid profiles of disparate B. multivorans strains are similar, while their respective fatty acyl substituent profiles differ quantitatively under identical cultivation conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Bertot GM, Restelli MA, Galanternik L, Urey RCA, Valvano MA, Grinstein S (2007) Nasal immunization with Burkholderia multivorans outer membrane proteins and the mucosal adjuvant adamantylamide dipeptide confers efficient protection against experimental lung infections with B. multivorans and B. cenocepacia. Infect Immun 75:2740–2752

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37:911–917

    Article  CAS  PubMed  Google Scholar 

  3. Bullard JW, Champlin FR, Burkus J, Millar SY, Conrad RS (2011) Triclosan-induced modification of unsaturated fatty acid metabolism and growth in Pseudomonas aeruginosa PA01. Curr Microbiol 62:697–702

    Article  CAS  PubMed  Google Scholar 

  4. Champlin FR, Gilleland JR, Conrad RS (1983) Conversion of phospholipids to free fatty acids in response to acquisition of polymyxin resistance in Pseudomonas aeruginosa. Antimicrob Agents Chemoth 24:5–9

    Article  CAS  Google Scholar 

  5. Cvejic JH, Putra SR, El-Beltagy A, Hattori R, Hattori T, Rohmer M (2000) Bacterial triterpenoids of the hopane series as biomarkers for the chemotaxonomy of Burkholderia, Pseudomonas, and Ralstonia spp. FEMS Microbiol Lett 183:295–299

    Article  CAS  PubMed  Google Scholar 

  6. Darnell KR, Hart ME, Champlin FR (1987) Variability of cell surface hydrophobicity among Pasteurella multocida somatic serotype and Actinobacillus lignieresii strains. J Clin Microbiol 25:67–71

    CAS  PubMed Central  PubMed  Google Scholar 

  7. Folch J, Lees M, Sloane Stanley GH (1957) A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem 226:497–509

    CAS  PubMed  Google Scholar 

  8. Fuller CA, Brignac PJ, Champlin FR (1993) Phospholipid fatty acid ester composition of Pasteurella multocida and Actinobacillus lignieresii. Curr Microbiol 27:237–240

    Article  CAS  Google Scholar 

  9. Hart ME, Champlin FR (1988) Susceptibility to hydrophobic molecules and phospholipid composition in Pasteurella multocida and Actinobacillus lignieresii. Antimicrob Agents Chemother 32:1354–1359

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Kadner RJ (1996) Cytoplasmic membrane. In: Neidhardt FC (ed) Escherichia coli and Salmonella cellular and molecular biology, vol 1, 2nd edn. ASM Press, Washington, pp 58–87

  11. Krejčí E, Kroppenstedt RM (2006) Differentiation of species combined into the Burkholderia cepacia complex and related taxa on the basis of their fatty acid patterns. J Clin Microbiol 44:1159–1164

    Article  PubMed Central  PubMed  Google Scholar 

  12. Mahenthiralingam E, Urban TA, Goldberg JB (2005) The multifarious, multireplicon Burkholderia cepacia complex. Nat Rev Microbiol 3:144–156

    Article  CAS  PubMed  Google Scholar 

  13. Mahenthiralingam E, Baldwin A, Dowson CG (2008) Burkholderia cepacia complex bacteria: opportunistic pathogens with important natural biology. J Appl Microbiol 104:1539–1551

    Article  CAS  PubMed  Google Scholar 

  14. Malott RJ, Steen-Kinnaird BR, Lee TD, Speert DP (2012) Identification of hopanoid biosynthesis genes involved in polymyxin resistance in Burkholderia multivorans. Antimicrob Agents Chemother 56:464–471

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. McKeon SA, Nguyen DT, Viteri DF, Zlosnik JEA, Sokol PA (2010) Functional quorum sensing systems are maintained during chronic Burkholderia cepacia complex infections in patients with cystic fibrosis. J Infect Dis 203:383–392

    Article  PubMed  Google Scholar 

  16. Morrison WR, Smith LM (1964) Preparation of fatty acid methyl esters and dimethylacetals from lipids with boron fluoride-methanol. J Lipid Res 5:600–608

    CAS  PubMed  Google Scholar 

  17. O’Fallon JV, Busboom JR, Nelson ML, Gaskins CT (2007) A direct method for fatty acid methyl esters synthesis: application to wet meat tissues, oils, and feedstuffs. J Anim Sci 85:1511–1521

    Article  PubMed  Google Scholar 

  18. Reik R, Spilker T, LiPuma JL (2005) Distribution of Burkholderia cepacia complex species among isolates recovered from persons with or without cystic fibrosis. J Clin Microbiol 43:2926–2928

    Article  PubMed Central  PubMed  Google Scholar 

  19. Skidmore WD, Entenman C (1962) Two-dimensional thin-layer chromatography of rat liver phophatides. J Lipid Res 3:471–475

    CAS  Google Scholar 

  20. Stanier RY, Palleroni NJ, Doudoroff M (1966) The aerobic pseudomonads: a taxonomic study. J Gen Microbiol 43:159–271

    Article  CAS  PubMed  Google Scholar 

  21. Taylor CJ, Anderson AJ, Wilkinson SG (1998) Phenotypic variation of lipid composition in Burkholderia cepacia: a response to increased growth temperature is a greater content of 2-hydroxy acids in phosphatidylethanolamine and ornithine amide lipid. Microbiol 144:1737–1745

    Article  CAS  Google Scholar 

  22. Vandamme P, Holmes B, Vancanneyt M, Coenye T, Hoste B, Coopman R, Revets H, Lauwers S, Gillis M, Kersters K, Govan JRW (1997) Occurrence of multiple genomovars of Burkholderia cepacia in cystic fibrosis patients and proposal of Burkholderia multivorans sp. nov. Int J Syst Bacteriol 47:1188–1200

    Article  CAS  PubMed  Google Scholar 

  23. Vial L, Chapalain A, Groleau M-C, Déziel E (2011) The various lifestyles of the Burkholderia cepacia complex species: a tribute to adaptation. Environ Microbiol 13:1–12

    Article  CAS  PubMed  Google Scholar 

  24. Zahariadis G, Levy MH, Burns JL (2003) Cepacia-like syndrome caused by Burkholderia multivorans. Can J Infect Dis 14:123–125

    PubMed Central  PubMed  Google Scholar 

  25. Zelazny AM, Ding L, Elloumi HZ, Brinster L, Czapiga M, Ulrich RL, Sampaio EP, Holland SM (2008) Burkholderia multivorans preferential interaction with chronic granulomatous disease leukocytes: cytokine induction and virulence in vivo, abstr D-027. Abstr 108th Gen Meet Am Soc Microbiol American Society for Micrbiology, Boston

  26. Zelazny AM, Ding L, Elloumi HZ, Brinster LR, Benedetti F, Czapiga M, Ulrich RL, Ballentine SJ, Goldberg JB, Sampaio EP, Holland SM (2009) Virulence and cellular interactions of Burkholderia multivorans in chronic granulomatous disease. Infect Immun 77:4337–4344

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge Dr. A.M. Zelazny of the NIH National Institute of Allergy and Infectious Diseases for kindly providing B. multivorans environmental and clinical strains. Funding to F.R.C. was provided by the Oklahoma State University Center for Health Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sallie A. Ruskoski.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ruskoski, S.A., Bullard, J.W. & Champlin, F.R. Cell Envelope Phospholipid Composition of Burkholderia multivorans . Curr Microbiol 69, 388–393 (2014). https://doi.org/10.1007/s00284-014-0599-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-014-0599-3

Keywords

Navigation