Skip to main content
Log in

Functional Characterization of the potRABCD Operon for Spermine and Spermidine Uptake and Regulation in Staphylococcus aureus

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Spermine, a potent bactericidal polyamine, exerts a strong synergistic effect with β-lactams against methicillin-resistant Staphylococcus aureus. Transcriptome analysis revealed that the putative potRABCD operon for polyamine uptake and regulation exhibited significant fold change upon exposure to exogenous spermine. Properties of the PotABCD transporter in polyamine uptake were studied using wild-type and the pot deletion mutant. It was found that spermidine and spermine, but not putrescine, were the preferred substrates for the Pot system of high affinity. The PotR protein was purified from a recombinant strain of Escherichia coli, and binding of PotR to the pot regulatory region was demonstrated by electromobility shift assays. In summary, these results support the physiological function of PotR in regulation of the expression of PotABCD for spermidine and spermine uptake in S. aureus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Cohen SS (1998) A guide to the polyamines. Oxford University Press, New York

    Google Scholar 

  2. Amendola R, Cervelli M, Fratini E, Polticelli F, Sallustio DE, Mariottini P (2009) Spermine metabolism and anticancer therapy. Curr Cancer Drug Targets 9(2):118–130

    Article  CAS  PubMed  Google Scholar 

  3. Zhang M, Wang H, Tracey KJ (2000) Regulation of macrophage activation and inflammation by spermine: a new chapter in an old story. Crit Care Med 28(4):60–66

    Article  Google Scholar 

  4. Joshi GS, Spontak JS, Klapper DG, Richardson AR (2011) Arginine catabolic mobile element encoded speG abrogates the unique hypersensitivity of Staphylococcus aureus to exogenous polyamines. Mol Microbiol 82(1):9–20. doi:10.1111/j.1365-2958.2011.07809.x

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Grossowicz N, Razin S, Rozansky R (1955) Factors influencing the antibacterial action of spermine and spermidine on Staphylococcus aureus. J Gen Microbiol 13(3):436–441

    Article  CAS  PubMed  Google Scholar 

  6. Yao X, Lu CD (2012) A PBP 2 mutant devoid of the transpeptidase domain abolishes spermine-beta-lactam synergy in Staphylococcus aureus Mu50. Antimicrob Agents Chemother 56(1):83–91. doi:10.1128/AAC.05415-11

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Thurlow LR, Joshi GS, Clark JR, Spontak JS, Neely CJ, Maile R, Richardson AR (2013) Functional modularity of the arginine catabolic mobile element contributes to the success of USA300 methicillin-resistant Staphylococcus aureus. Cell Host Microbe 13(1):100–107. doi:10.1016/j.chom.2012.11.012

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Kwon DH, Lu CD (2007) Polyamine effects on antibiotic susceptibility in bacteria. Antimicrob Agents Chemother 51(6):2070–2077. doi:10.1128/AAC.01472-06 AAC.01472-06 [pii]

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Yao X, He W, Lu CD (2011) Functional characterization of seven gamma-glutamylpolyamine synthetase genes and the bauRABCD locus for polyamine and beta-alanine utilization in Pseudomonas aeruginosa PAO1. J Bacteriol 193(15):3923–3930. doi:10.1128/JB.05105-11 JB.05105-11 [pii]

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Kashiwagi K, Miyamoto S, Nukui E, Kobayashi H, Igarashi K (1993) Functions of potA and potD proteins in spermidine-preferential uptake system in Escherichia coli. J Biol Chem 268(26):19358–19363

    CAS  PubMed  Google Scholar 

  11. Lu CD, Itoh Y, Nakada Y, Jiang Y (2002) Functional analysis and regulation of the divergent spuABCDEFGH-spuI operons for polyamine uptake and utilization in Pseudomonas aeruginosa PAO1. J Bacteriol 184(14):3765–3773

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Charpentier E, Anton AI, Barry P, Alfonso B, Fang Y, Novick RP (2004) Novel cassette-based shuttle vector system for gram-positive bacteria. Appl Environ Microbiol 70(10):6076–6085. doi:10.1128/AEM.70.10.6076-6085.2004

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Memmi G, Filipe SR, Pinho MG, Fu Z, Cheung A (2008) Staphylococcus aureus PBP4 is essential for beta-lactam resistance in community-acquired methicillin-resistant strains. Antimicrob Agents Chemother 52(11):3955–3966. doi:10.1128/AAC.00049-08

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Kuwahara-Arai K, Kondo N, Hori S, Tateda-Suzuki E, Hiramatsu K (1996) Suppression of methicillin resistance in a mecA-containing pre-methicillin-resistant Staphylococcus aureus strain is caused by the mecI-mediated repression of PBP 2′ production. Antimicrob Agents Chemother 40(12):2680–2685

    CAS  PubMed Central  PubMed  Google Scholar 

  15. Herbert S, Ziebandt AK, Ohlsen K, Schafer T, Hecker M, Albrecht D, Novick R, Gotz F (2010) Repair of global regulators in Staphylococcus aureus 8325 and comparative analysis with other clinical isolates. Infect Immun 78(6):2877–2889. doi:10.1128/IAI.00088-10

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Li C, Lu CD (2009) Arginine racemization by coupled catabolic and anabolic dehydrogenases. Proc Natl Acad Sci USA 106(3):906–911. doi:10.1073/pnas.0808269106

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Igarashi K, Kashiwagi K (1999) Polyamine transport in bacteria and yeast. Biochem J 344(Pt 3):633–642

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Igarashi KI, Kashiwagi K (2001) Polyamine uptake systems in Escherichia coli. Res Microbiol 152:271–278

    Article  CAS  PubMed  Google Scholar 

  19. Kashiwagi K, Innami A, Zenda R, Tomitori H, Igarashi K (2002) The ATPase activity and the functional domain of PotA, a component of the spermidine-preferential uptake system in Escherichia coli. J Biol Chem 277(27):24212–24219. doi:10.1074/jbc.M202849200

    Article  CAS  PubMed  Google Scholar 

  20. Cohen SS (1998) A guide to the polyamines. Oxford University Press, New York

    Google Scholar 

  21. Igarashi K, Kashiwagi K (2000) Polyamines: mysterious modulators of cellular functions. Biochem Biophys Res Commun 271(3):559–564. doi:10.1006/bbrc.2000.2601

    Article  CAS  PubMed  Google Scholar 

  22. Michael AJ (2011) Exploring polyamine biosynthetic diversity through comparative and functional genomics. Methods Mol Biol 720:39–50. doi:10.1007/978-1-61779-034-8_2

    Article  CAS  PubMed  Google Scholar 

  23. Hanfrey CC, Pearson BM, Hazeldine S, Lee J, Gaskin DJ, Woster PM, Phillips MA, Michael AJ (2011) Alternative spermidine biosynthetic route is critical for growth of Campylobacter jejuni and is the dominant polyamine pathway in human gut microbiota. J Biol Chem 286(50):43301–43312. doi:10.1074/jbc.M111.307835

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Shaw FL, Elliott KA, Kinch LN, Fuell C, Phillips MA, Michael AJ (2010) Evolution and multifarious horizontal transfer of an alternative biosynthetic pathway for the alternative polyamine sym-homospermidine. J Biol Chem 285(19):14711–14723. doi:10.1074/jbc.M110.107219

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Lee J, Sperandio V, Frantz DE, Longgood J, Camilli A, Phillips MA, Michael AJ (2009) An alternative polyamine biosynthetic pathway is widespread in bacteria and essential for biofilm formation in Vibrio cholerae. J Biol Chem 284(15):9899–9907. doi:10.1074/jbc.M900110200

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Pegg AE, Casero RA Jr (2011) Current status of the polyamine research field. Methods Mol Biol 720:3–35. doi:10.1007/978-1-61779-034-8_1

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Pegg AE (2009) Mammalian polyamine metabolism and function. IUBMB Life 61(9):880–894. doi:10.1002/iub.230

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Anton DL, Kutny R (1987) Mechanism of substrate inactivation of Escherichia coli S-adenosylmethionine decarboxylase. Biochemistry 26(20):6444–6447

    Article  CAS  PubMed  Google Scholar 

  29. Tabor CW, Tabor H, Xie QW (1986) Spermidine synthase of Escherichia coli: localization of the speE gene. Proc Natl Acad Sci USA 83(16):6040–6044

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Nakada Y, Itoh Y (2003) Identification of the putrescine biosynthetic genes in Pseudomonas aeruginosa and characterization of agmatine deiminase and N-carbamoylputrescine amidohydrolase of the arginine decarboxylase pathway. Microbiology 149(Pt 3):707–714

    Article  CAS  PubMed  Google Scholar 

  31. Johnson L, Mulcahy H, Kanevets U, Shi Y, Lewenza S (2012) Surface-localized spermidine protects the Pseudomonas aeruginosa outer membrane from antibiotic treatment and oxidative stress. J Bacteriol 194(4):813–826. doi:10.1128/JB.05230-11

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Sekowska A, Coppee JY, Le Caer JP, Martin-Verstraete I, Danchin A (2000) S-adenosylmethionine decarboxylase of Bacillus subtilis is closely related to archaebacterial counterparts. Mol Microbiol 36(5):1135–1147

    Article  CAS  PubMed  Google Scholar 

  33. Ware D, Jiang Y, Lin W, Swiatlo E (2006) Involvement of potD in Streptococcus pneumoniae polyamine transport and pathogenesis. Infect Immun 74(1):352–361. doi:10.1128/Iai.74.1.352-361.2006

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Zhou L, Wang J, Zhang LH (2007) Modulation of bacterial type III secretion system by a spermidine transporter dependent signaling pathway. PLoS ONE 2(12):e1291. doi:10.1371/journal.pone.0001291

    Article  PubMed Central  PubMed  Google Scholar 

  35. Jelsbak L, Thomsen LE, Wallrodt I, Jensen PR, Olsen JE (2012) Polyamines are required for virulence in Salmonella enterica serovar Typhimurium. PLoS ONE 7(4):e36149. doi:10.1371/journal.pone.0036149

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Karatan E, Duncan TR, Watnick PI (2005) NspS, a predicted polyamine sensor, mediates activation of Vibrio cholerae biofilm formation by norspermidine. J Bacteriol 187(21):7434–7443. doi:10.1128/JB.187.21.7434-7443.2005

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. McGinnis MW, Parker ZM, Walter NE, Rutkovsky AC, Cartaya-Marin C, Karatan E (2009) Spermidine regulates Vibrio cholerae biofilm formation via transport and signaling pathways. FEMS Microbiol Lett 299(2):166–174. doi:10.1111/j.1574-6968.2009.01744.x

    Article  CAS  PubMed  Google Scholar 

  38. Patel CN, Wortham BW, Lines JL, Fetherston JD, Perry RD, Oliveira MA (2006) Polyamines are essential for the formation of plague biofilm. J Bacteriol 188(7):2355–2363. doi:10.1128/JB.188.7.2355-2363.2006

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Burrell M, Hanfrey CC, Murray EJ, Stanley-Wall NR, Michael AJ (2010) Evolution and multiplicity of arginine decarboxylases in polyamine biosynthesis and essential role in Bacillus subtilis biofilm formation. J Biol Chem 285(50):39224–39238. doi:10.1074/jbc.M110.163154

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Sakamoto A, Terui Y, Yamamoto T, Kasahara T, Nakamura M, Tomitori H, Yamamoto K, Ishihama A, Michael AJ, Igarashi K, Kashiwagi K (2012) Enhanced biofilm formation and/or cell viability by polyamines through stimulation of response regulators UvrY and CpxR in the two-component signal transducing systems, and ribosome recycling factor. Int J Biochem Cell Biol 44(11):1877–1886. doi:10.1016/j.biocel.2012.07.010

    Article  CAS  PubMed  Google Scholar 

  41. Zhang X, Zhang Y, Liu J, Liu H (2013) PotD protein stimulates biofilm formation by Escherichia coli. Biotechnol Lett 35(7):1099–1106. doi:10.1007/s10529-013-1184-8

    Article  CAS  PubMed  Google Scholar 

  42. Goytia M, Dhulipala VL, Shafer WM (2013) Spermine impairs biofilm formation by Neisseria gonorrhoeae. FEMS Microbiol Lett 343(1):64–69. doi:10.1111/1574-6968.12130

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported in part by National Science Foundation (NSF0950217) to C.-D Lu and by the Molecular Basis of Disease Program fellowship of the Georgia State University to X. Yao.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiangyu Yao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yao, X., Lu, CD. Functional Characterization of the potRABCD Operon for Spermine and Spermidine Uptake and Regulation in Staphylococcus aureus . Curr Microbiol 69, 75–81 (2014). https://doi.org/10.1007/s00284-014-0556-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-014-0556-1

Keywords

Navigation