Skip to main content
Log in

PotD protein stimulates biofilm formation by Escherichia coli

  • Original Research Paper
  • Published:
Biotechnology Letters Aims and scope Submit manuscript

Abstract

In natural environments bacteria often adopt a biofilm-growth mode. PotD is a spermidine/putrescine-binding periplasmic protein belonging to polyamine transport system and we have examined its role during biofilm formation and for planktonic growth in Escherichia coli BL21(DE3) strains that either over-express PotD (PotD+), or under-express it (PotDi) and also in a control strain with vector pET26b(+) (PotD0). The three strains displayed similar growth in planktonic growth-mode, but over expression of PotD protein greatly stimulated the formation of biofilms, while less biofilm formed by strain PotDi in comparison to strain PotD0. The expressions of five genes, recA, sfiA, groEL, groES, and gyrA, were increasingly expressed in PotD+ biofilm cells. Thus, PotD is likely to change the rate of polyamine synthesis, which stimulates the expression of SOS genes and biofilm formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Al Safadi R, Abu-Ali GS, Sloup RE, Rudrik JT, Waters CM, Eaton KA, Manning SD (2012) Correlation between in vivo biofilm formation and virulence gene expression in Escherichia coli O104:H4. PLoS One 7(7):e41628

    Article  PubMed  CAS  Google Scholar 

  • Brandt AM, Raksajit W, Yodsang P, Mulo P, Incharoensakdi A, Salminen TA, Maenpaa P (2010) Characterization of the substrate-binding PotD subunit in Synechocystis sp. strain PCC 6803. Arch Microbiol 192(10):791–801

    Article  PubMed  CAS  Google Scholar 

  • Costerton JW, Stewart PS (2001) Battling biofilms. Sci Am 285(1):74–81

    Article  PubMed  CAS  Google Scholar 

  • Costerton JW, Lewandowski Z, Caldwell DE, Korber DR, Lappin-Scott HM (1995) Microbial biofilms. Annu Rev Microbiol 49:711–745

    Article  PubMed  CAS  Google Scholar 

  • Fonville NC, Bates D, Hastings PJ, Hanawalt PC, Rosenberg SM (2012) Role of RecA and the SOS response in thymineless death in Escherichia coli. PLoS Genet 6(3):e1000865

    Article  Google Scholar 

  • Gotoh H, Zhang Y, Dallo SF, Hong S, Kasaraneni N, Weitao T (2008) Pseudomonas aeruginosa, under DNA replication inhibition, tends to form biofilms via Arr. Res Microbiol 159(4):294–302. doi:10.1016/j.resmic.2008.02.002

    Article  PubMed  CAS  Google Scholar 

  • Han KY, Seo HS, Song JA, Ahn KY, Park JS, Lee J (2007) Transport proteins PotD and Crr of Escherichia coli, novel fusion partners for heterologous protein expression. Biochim Biophys Acta 1774(12):1536–1543

    Article  PubMed  CAS  Google Scholar 

  • Higashitani A, Higashitani N, Horiuchi K (1995) A cell division inhibitor SulA of Escherichia coli directly interacts with FtsZ through GTP hydrolysis. Biochem Biophys Res Commun 209(1):198–204

    Article  PubMed  CAS  Google Scholar 

  • Jefferson KK (2004) What drives bacteria to produce a biofilm? FEMS Microbiol Lett 236(2):163–173

    PubMed  CAS  Google Scholar 

  • Kandror O, Busconi L, Sherman M, Goldberg AL (1994) Rapid degradation of an abnormal protein in Escherichia coli involves the chaperones GroEL and GroES. J Biol Chem 269(38):23575–23582

    PubMed  CAS  Google Scholar 

  • Kandror O, Sherman M, Goldberg A (1999) Rapid degradation of an abnormal protein in Escherichia coli proceeds through repeated cycles of association with GroEL. J Biol Chem 274(53):37743–37749

    Article  PubMed  CAS  Google Scholar 

  • Kaneko MK, Tian W, Takano S, Suzuki H, Sawa Y, Hozumi Y, Goto K, Yamazaki K, Kitanaka C, Kato Y (2011) Establishment of a novel monoclonal antibody SMab-1 specific for IDH1-R132S mutation. Biochem Biophys Res Commun 406(4):608–613

    Article  PubMed  CAS  Google Scholar 

  • Kashiwagi K, Miyamoto S, Nukui E, Kobayashi H, Igarashi K (1993) Functions of potA and potD proteins in spermidine-preferential uptake system in Escherichia coli. J Biol Chem 268(26):19358–19363

    PubMed  CAS  Google Scholar 

  • Layton JC, Foster PL (2005) Error-prone DNA polymerase IV is regulated by the heat shock chaperone GroE in Escherichia coli. J Bacteriol 187(2):449–457

    Article  PubMed  CAS  Google Scholar 

  • Liu H (2006) Protein expression in Pseudomonas putida F1 biofilms. Dissertation, King’s College London

  • Lopez-Garcia P (1999) DNA supercoiling and temperature adaptation: a clue to early diversification of life? J Mol Evol 49(4):439–452

    Article  PubMed  CAS  Google Scholar 

  • Lusetti SL, Cox MM (2002) The bacterial RecA protein and the recombinational DNA repair of stalled replication forks. Annu Rev Biochem 71:71–100

    Article  PubMed  CAS  Google Scholar 

  • Mah TF, O’Toole GA (2001) Mechanisms of biofilm resistance to antimicrobial agents. Trends Microbiol 9(1):34–39

    Article  PubMed  CAS  Google Scholar 

  • Manasherob R, Miller C, Kim KS, Cohen SN (2012) Ribonuclease E modulation of the bacterial SOS response. PLoS One 7(6):e38426

    Article  PubMed  CAS  Google Scholar 

  • Matsukawa M, Greenberg EP (2004) Putative exopolysaccharide synthesis genes influence Pseudomonas aeruginosa biofilm development. J Bacteriol 186(14):4449–4456

    Article  PubMed  CAS  Google Scholar 

  • Mukherjee A, Cao C, Lutkenhaus J (1998) Inhibition of FtsZ polymerization by SulA, an inhibitor of septation in Escherichia coli. Proc Natl Acad Sci USA 95(6):2885–2890

    Article  PubMed  CAS  Google Scholar 

  • Pan YH, Liao CC, Kuo CC, Duan KJ, Liang PH, Yuan HS, Hu ST, Chak KF (2006) The critical roles of polyamines in regulating ColE7 production and restricting ColE7 uptake of the colicin-producing Escherichia coli. J Biol Chem 281(19):13083–13091. doi:10.1074/jbc.M511365200

    Article  PubMed  CAS  Google Scholar 

  • Prakash JS, Sinetova M, Zorina A, Kupriyanova E, Suzuki I, Murata N, Los DA (2009) DNA supercoiling regulates the stress-inducible expression of genes in the cyanobacterium Synechocystis. Mol Biosyst 5(12):1904–1912

    Article  PubMed  CAS  Google Scholar 

  • Schembri MA, Kjaergaard K, Klemm P (2003) Global gene expression in Escherichia coli biofilms. Mol Microbiol 48(1):253–267

    Article  PubMed  CAS  Google Scholar 

  • Sheldon JR, Yim MS, Saliba JH, Chung WH, Wong KY, Leung KT (2012) Role of rpoS in biofilm development and survival of Escherichia coli O157:H7 strain H32. Appl Environ Microbiol 78:8331–8339. doi:10.1128/AEM.02149-12

    Article  PubMed  CAS  Google Scholar 

  • Takei Y, Iizuka R, Ueno T, Funatsu T (2012) Single-molecule observation of protein folding in symmetric GroEL-(GroES)2 complexes. J Biol Chem 287(49):41118–41125

    Article  PubMed  CAS  Google Scholar 

  • Tattevin P, Basuino L, Chambers HF (2009) Subinhibitory fluoroquinolone exposure selects for reduced beta-lactam susceptibility in methicillin-resistant Staphylococcus aureus and alterations in the SOS-mediated response. Res Microbiol 160(3):187–192

    Article  PubMed  CAS  Google Scholar 

  • Tremoulet F, Duche O, Namane A, Martinie B, Labadie JC (2002) A proteomic study of Escherichia coli O157:H7 NCTC 12900 cultivated in biofilm or in planktonic growth mode. FEMS Microbiol Lett 215(1):7–14

    Article  PubMed  CAS  Google Scholar 

  • Tse-Dinh YC, Qi H, Menzel R (1997) DNA supercoiling and bacterial adaptation: thermotolerance and thermoresistance. Trends Microbiol 5(8):323–326

    Article  PubMed  CAS  Google Scholar 

  • van der Veen S, Abee T (2010) Dependence of continuous-flow biofilm formation by Listeria monocytogenes EGD-e on SOS response factor YneA. Appl Environ Microbiol 76(6):1992–1995. doi:10.1128/AEM.02680-09

    Article  PubMed  CAS  Google Scholar 

  • Whitchurch CB, Tolker-Nielsen T, Ragas PC, Mattick JS (2002) Extracellular DNA required for bacterial biofilm formation. Science 295(5559):1487

    Article  PubMed  CAS  Google Scholar 

  • Zhang K, Ou M, Wang W, Ling J (2009) Effects of quorum sensing on cell viability in Streptococcus mutans biofilm formation. Biochem Biophys Res Commun 379(4):933–938. doi:10.1016/j.bbrc.2008.12.175

    Article  PubMed  CAS  Google Scholar 

  • Zijnge V, Kieselbach T, Oscarsson J (2012) Proteomics of protein secretion by Aggregatibacter actinomycetemcomitans. PLoS One 7(7):e41662

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors declare no conflict of interests. This study was supported by The Natural Science foundation of Shandong Province (2009ZRB02168) and Shangdong Province Young and Middle-Aged Scientists Research Awards Foundation (2007BS08019).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Honglei Liu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 12 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, X., Zhang, Y., Liu, J. et al. PotD protein stimulates biofilm formation by Escherichia coli . Biotechnol Lett 35, 1099–1106 (2013). https://doi.org/10.1007/s10529-013-1184-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10529-013-1184-8

Keywords

Navigation