Skip to main content
Log in

How are the Non-classically Secreted Bacterial Proteins Released into the Extracellular Milieu?

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Most bacterial proteins that are destined to leave the cytoplasm are exported across the cell membrane to their sites of function. These proteins are generally exported via the classical secretion pathway, in which the signal peptide plays a central role. However, some bacterial proteins have been found in the extracellular milieu without any apparent signal peptide. As none of the classical secretion systems is involved in their secretion, this occurrence is termed non-classical protein secretion. The mechanism or mechanisms responsible for non-classical secretion are contentious. This review compiles evidence from the debate over whether the release of the non-classically secreted proteins is the result of cell lysis and discusses how these proteins are exported to the exterior of the cell.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aguilera L, Ferreira E, Giménez R, Fernández FJ, Taulés M, Aguilar J, Vega MC, Badia J, Baldomà L (2012) Secretion of the housekeeping protein glyceraldehyde-3-phosphate dehydrogenase by the LEE-encoded type III secretion system in enteropathogenic Escherichia coli. Int J Biochem Cell Biol 44(6):955–962

    Article  PubMed  CAS  Google Scholar 

  2. Antelmann H, Van Dijl JM, Bron S, Hecker M (2006) Proteomic survey through secretome of Bacillus subtilis. Methods Biochem Anal 49:179–208

    PubMed  CAS  Google Scholar 

  3. Antikainen J, Kuparinen V, Lähteenmäki K, Korhonen TK (2007) pH dependent association of enolase and glyceraldehyde-3-phosphate dehydrogenase of Lactobacillus crispatus with the cell wall and lipoteichoic acids. J Bacteriol 189:4539–4543

    Article  PubMed  CAS  Google Scholar 

  4. Antikainen J, Kuparinen V, Lähteenmäki K, Korhonen TK (2007) Enolases from Gram-positive bacterial pathogens and commensal lactobacilli share functional similarity in virulence-associated traits. FEMS Immunol Med Microbiol 51:526–534

    Article  PubMed  CAS  Google Scholar 

  5. Bandyopadhyay P, Steinman HM (2000) Catalase-peroxidases of Legionella pneumophila: cloning of the katA gene and studies of KatA function. J Bacteriol 182:6679–6686

    Article  PubMed  CAS  Google Scholar 

  6. Beck HC, Madsen SM, Glenting J, Petersen J, Israelsen H, Nørrelykke MR, Antonsson M, Hansen AM (2009) Proteomic analysis of cell surface-associated proteins from probiotic Lactobacillus plantarum. FEMS Microbiol Lett 297(1):61–66

    Article  PubMed  CAS  Google Scholar 

  7. Bendtsen JD, Kiemer L, Fausbøll A, Brunak S (2005) Non-classical protein secretion in bacteria. BMC Microbiol 5:58

    Article  PubMed  Google Scholar 

  8. Bendtsen JD, Wooldridge KG (2009) Non-classical secretion. In: Wooldridge K (ed) Bacterial secreted proteins: secretory mechanisms and role in pathogenesis. Caister Academic Press, Norfolk, UK, pp 193–223

    Google Scholar 

  9. Bergmann S, Rohde M, Chhatwal GS, Hammerschmidt S (2001) Alpha enolase of Streptococcus pneumoniae is a plasmin(ogen)-binding protein displayed on the bacterial cell surface. Mol Microbiol 40:1273–1287

    Article  PubMed  CAS  Google Scholar 

  10. Boël G, Pichereau V, Mijakovic I, Mazé A, Poncet S, Gillet S, Giard JC, Hartke A, Auffray Y, Deutscher J (2004) Is 2-phosphoglycerate-dependent automodification of bacterial enolases implicated in their export? J Mol Biol 337(2):485–496

    Article  PubMed  Google Scholar 

  11. Boël G, Jin H, Pancholi V (2005) Inhibition of cell surface export of group A streptococcal anchorless surface dehydrogenase affects bacterial adherence and antiphagocytic properties. Infect Immun 73:6237–6624

    Article  PubMed  Google Scholar 

  12. Braunstein M, Espinosa BJ, Chan J, Belisle JT, Jacobs WR Jr (2003) SecA2 functions in the secretion of superoxide dismutase A and in the virulence of Mycobacterium tuberculosis. Mol Microbiol 48:453–464

    Article  PubMed  CAS  Google Scholar 

  13. Candela M, Centanni M, Fiori J, Biagi E, Turroni S, Orrico C, Bergmann S, Hammerschmidt S, Brigidi P (2010) DnaK from Bifidobacterium animalis subsp. lactis is a surface-exposed human plasminogen receptor upregulated in response to bile salts. Microbiology 156:1609–1618

    Article  PubMed  CAS  Google Scholar 

  14. Choi CW, Lee YG, Kwon SO, Kim HY, Lee JC, Chung YH, Yun CY, Kim SI (2012) Analysis of Streptococcus pneumoniae secreted antigens by immuno-proteomic approach. Diagn Microbiol Infect Dis 72(4):318–327

    Article  PubMed  CAS  Google Scholar 

  15. Desvaux M, Hébraud M, Talon R, Henderson IR (2009) Secretion and subcellular localizations of bacterial proteins: a semantic awareness issue. Trends Microbiol 17(4):139–145

    Article  PubMed  CAS  Google Scholar 

  16. Desvaux M, Dumas E, Chafsey I, Chambon C, Hébraud M (2010) Comprehensive appraisal of the extracellular proteins from a monoderm bacterium: theoretical and empirical exoproteomes of Listeria monocytogenes EGD-e by secretomics. J Proteome Res 9(10):5076–5092

    Article  PubMed  CAS  Google Scholar 

  17. Dreisbach A, Hempel K, Buist G, Hecker M, Becher D, van Dijl JM (2010) Profiling the surfacome of Staphylococcus aureus. Proteomics 10:3082–3096

    Article  PubMed  CAS  Google Scholar 

  18. Eichenbaum Z, Green BD, Scott JR (1996) Iron starvation causes release from the group A streptococcus of the ADP-ribosylating protein called plasmin receptor or surface glyceraldehyde-3-phosphate-dehydrogenase. Infect Immun 64:1956–1960

    PubMed  CAS  Google Scholar 

  19. Gohar M, Gilois N, Graveline R, Garreau C, Sanchis V, Lereclus D (2005) A comparative study of Bacillus cereus, Bacillus thuringiensis and Bacillus anthracis extracellular proteomes. Proteomics 5:3696–3711

    Article  PubMed  CAS  Google Scholar 

  20. Harth G, Horwitz MA (1997) Expression and efficient export of enzymatically active Mycobacterium tuberculosis glutamine synthetase in Mycobacterium smegmatis and evidence that the information for export is contained within the protein. J Biol Chem 272:22728–22735

    Article  PubMed  CAS  Google Scholar 

  21. Harth G, Horwitz MA (1999) Export of recombinant Mycobacterium tuberculosis superoxide dismutase is dependent upon both information in the protein and mycobacterial export machinery. A model for studying export of leaderless proteins by pathogenic mycobacteria. J Biol Chem 274:4281–4292

    Article  PubMed  CAS  Google Scholar 

  22. Henderson B, Martin A (2011) Bacterial virulence in the moonlight: multitasking bacterial moonlighting proteins are virulence determinants in infectious disease. Infect Immun 79:3476–3491

    Article  PubMed  CAS  Google Scholar 

  23. Hughes MJ, Moore JC, Lane JD, Wilson R, Pribul PK, Younes ZN, Dobson RJ, Everest P, Reason AJ, Redfern JM, Greer FM, Paxton T, Panico M, Morris HR, Feldman RG, Santangelo JD (2002) Identification of major outer surface proteins of Streptococcus agalactiae. Infect Immun 70(3):1254–1259

    Article  PubMed  CAS  Google Scholar 

  24. Jeffery CJ (2009) Moonlighting proteins-an update. Mol BioSyst 5:345–350

    Article  PubMed  CAS  Google Scholar 

  25. Jers C, Pedersen MM, Paspaliari DK, Schütz W, Johnsson C, Soufi B, Macek B, Jensen PR, Mijakovic I (2010) Bacillus subtilis BY-kinase PtkA controls enzyme activity and localization of its protein substrates. Mol Microbiol 77(2):287–299

    Article  PubMed  CAS  Google Scholar 

  26. Kainulainen V, Loimaranta V, Pekkala A, Edelman S, Antikainen J, Kylväjä R, Laaksonen M, Laakkonen L, Finne J, Korhonen TK (2012) Glutamine synthetase and glucose-6-phosphate isomerase are adhesive moonlighting proteins of Lactobacillus crispatus released by epithelial cathelicidin LL-37. J Bacteriol 194(10):2509–2519

    Article  PubMed  CAS  Google Scholar 

  27. Katakura Y, Sano R, Hashimoto T, Ninomiya K, Shioya S (2010) Lactic acid bacteria display on the cell surface cytosolic proteins that recognize yeast mannan. Appl Microbiol Biotechnol 86(1):319–326

    Article  PubMed  CAS  Google Scholar 

  28. Kouwen TR, Antelmann H, van der Ploeg R, Denham EL, Hecker M, van Dijl JM (2009) MscL of Bacillus subtilis prevents selective release of cytoplasmic proteins in a hypotonic environment. Proteomics 9(4):1033–1043

    Article  PubMed  CAS  Google Scholar 

  29. LaVallie ER, Stahl ML (1989) Cloning of the flagellin gene from Bacillus subtilis and complementation studies of an in vitro-derived deletion mutation. J Bacteriol 171(6):3085–3094

    PubMed  CAS  Google Scholar 

  30. Lee EY, Bang JY, Park GW, Choi DS, Kang JS, Kim HJ, Park KS, Lee JO, Kim YK, Kwon KH, Kim KP, Gho YS (2007) Global proteomic profiling of native outer membrane vesicles derived from Escherichia coli. Proteomics 7:3143–3153

    Article  PubMed  CAS  Google Scholar 

  31. Lei B, Mackie S, Lukomski S, Musser JM (2000) Identification and immunogenicity of group A streptococcus culture supernatant proteins. Infect Immun 68:6807–6818

    Article  PubMed  CAS  Google Scholar 

  32. Lenz LL, Mohammadi S, Geissler A, Portnoy DA (2003) SecA2-dependent secretion of autolytic enzymes promotes Listeria monocytogenes pathogenesis. Proc Natl Acad Sci USA 100:12432–12437

    Article  PubMed  CAS  Google Scholar 

  33. Ling E, Feldman G, Portnoi M, Dagan R, Overweg K, Mulholland F, Chalifa-Caspi V, Wells J, Mizrachi-Nebenzahl Y (2004) Glycolytic enzymes associated with the cell surface of Streptococcus pneumoniae are antigenic in humans and elicit protective immune responses in the mouse. Clin Exp Immunol 138(2):290–298

    Article  PubMed  CAS  Google Scholar 

  34. Naclerio G, Baccigalupi L, Caruso C, De Felice M, Ricca E (1995) Bacillus subtilis vegetative catalase is an extracellular enzyme. Appl Environ Microbiol 61(12):4471–4473

    PubMed  CAS  Google Scholar 

  35. Nandakumar MP, Cheung A, Marten MR (2006) Proteomic analysis of extracellular proteins from Escherichia coli W3110. J Proteome Res 5:1155–1161

    Article  PubMed  CAS  Google Scholar 

  36. Nelson D, Goldstein JM, Boatright K, Harty DW, Cook SL, Hickman PJ, Potempa J, Travis J, Mayo JA (2001) pH-regulated secretion of a glyceraldehyde-3-phosphate dehydrogenase from Streptococcus gordonii FSS2: purification, characterization, and cloning of the gene encoding this enzyme. J Dent Res 80:371–377

    Article  PubMed  CAS  Google Scholar 

  37. Nickel W (2003) The mystery of nonclassical protein secretion. A current view on cargo proteins and potential export routes. Eur J Biochem 270(10):2109–2119

    Article  PubMed  CAS  Google Scholar 

  38. Oliveira L, Madureira P, Andrade EB, Bouaboud A, Morello E, Ferreira P, Poyart C, Trieu-Cuot P, Dramsi S (2012) Group B streptococcus GAPDH is released upon cell lysis, associates with bacterial surface, and induces apoptosis in murine macrophages. PLoS ONE 7(1):e29963

    Article  PubMed  CAS  Google Scholar 

  39. Pacheco LG, Slade SE, Seyffert N, Santos AR, Castro TL, Silva WM, Santos AV, Santos SG, Farias LM, Carvalho MA, Pimenta AM, Meyer R, Silva A, Scrivens JH, Oliveira SC, Miyoshi A, Dowson CG, Azevedo V (2011) A combined approach for comparative exoproteome analysis of Corynebacterium pseudotuberculosis. BMC Microbiol 11(1):12

    Article  PubMed  CAS  Google Scholar 

  40. Pallen MJ (2002) The ESTA-6/WXG100 superfamily—and a new gram-positive secretion system? Trends Microbiol 10(5):209–212

    Article  PubMed  CAS  Google Scholar 

  41. Pancholi V, Chhatwal GS (2003) Housekeeping enzymes as virulence factors for pathogens. Int J Med Microbiol 293:391–401

    Article  PubMed  CAS  Google Scholar 

  42. Pasztor L, Ziebandt AK, Nega M, Schlag M, Haase S, Franz-Wachtel M, Madlung J, Nordheim A, Heinrichs DE, Götz F (2010) Staphylococcal major autolysin (Atl) is involved in excretion of cytoplasmic proteins. J Biol Chem 285:36794–36803

    Article  PubMed  CAS  Google Scholar 

  43. Prudovsky I, Kumar TK, Sterling S, Neivandt D (2013) Protein-phospholipid interactions in nonclassical protein secretion: problem and methods of study. Int J Mol Sci 14(2):3734–3772

    Article  PubMed  CAS  Google Scholar 

  44. Renier S, Micheau P, Talon R, Hébraud M, Desvaux M (2012) Subcellular localization of extracytoplasmic proteins in monoderm bacteria: rational secretomics-based strategy for genomic and proteomic analyses. PLoS One 7(8):e42982

    Article  PubMed  CAS  Google Scholar 

  45. Riezman H (1997) The ins and outs of protein translocation. Science 278:1728–1729

    Article  PubMed  CAS  Google Scholar 

  46. Rigel NW, Braunstein M (2008) A new twist on an old pathway-accessory Sec systems. Mol Microbiol 69(2):291–302

    Article  PubMed  CAS  Google Scholar 

  47. Rosenkrands I, Weldingh K, Jacobsen S, Hansen CV, Florio W, Gianetri I, Andersen P (2000) Mapping and identification of Mycobacterium tuberculosis proteins by two-dimensional gel electrophoresis, microsequencing and immunodetection. Electrophoresis 21(5):935–948

    Article  PubMed  CAS  Google Scholar 

  48. Rosenkrands I, Slayden RA, Crawford J, Aagaard C, Barry CE 3rd, Andersen P (2002) Hypoxic response of Mycobacterium tuberculosis studied by metabolic labeling and proteome analysis of cellular and extracellular proteins. J Bacteriol 184(13):3485–3491

    Article  PubMed  CAS  Google Scholar 

  49. Saad N, Urdaci M, Vignoles C, Chaignepain S, Tallon R, Schmitter JM, Bressollier P (2009) Lactobacillus plantarum 299v surface-bound GAPDH: a new insight into enzyme cell walls location. J Microbiol Biotechnol 19:1635–1643

    Article  PubMed  CAS  Google Scholar 

  50. Sánchez B, Bressollier P, Chaignepain S, Schmitter JM, Urdaci MC (2009) Identification of surface-associated proteins in the probiotic bacterium Lactobacillus rhamnosus GG. Int Dairy J 19(2):85–88

    Article  Google Scholar 

  51. Schatz G, Dobberstein B (1996) Common principles of protein translocation across membranes. Science 271:1519–1526

    Article  PubMed  CAS  Google Scholar 

  52. Schaumburg J, Diekmann O, Hagendorff P, Bergmann S, Rohde M, Hammerschmidt S, Jänsch L, Wehland J, Kärst U (2004) The cell wall subproteome of Listeria monocytogenes. Proteomics 4(10):2991–3006

    Article  PubMed  CAS  Google Scholar 

  53. Scott JR, Barnett TC (2006) Surface proteins of gram-positive bacteria and how they get there. Annu Rev Microbiol 60:397–423

    Article  PubMed  CAS  Google Scholar 

  54. Sibbald M, van Dij JML (2009) Secretome mapping in Gram-positive pathogens. In: Wooldridge K (ed) Bacterial secreted proteins: secretory mechanisms and role in pathogenesis. Caister Academic Press, Norfolk, pp 193–223

    Google Scholar 

  55. Tjalsma H, Antelmann H, Jongbloed JD, Braun PG, Darmon E, Dorenbos R, Dubois JY, Westers H, Zanen G, Quax WJ, Kuipers OP, Bron S, Hecker M, van Dijl JM (2004) Proteomics of protein secretion by Bacillus subtilis: separating the “secrets” of the secretome. Microbiol Mol Biol Rev 68(2):207–233

    Article  PubMed  CAS  Google Scholar 

  56. Tschumi A, Grau T, Albrecht D, Rezwan M, Antelmann H, Sander P (2012) Functional analyses of mycobacterial lipoprotein diacylglyceryl transferase and comparative secretome analysisof a mycobacterial lgt mutant. J Bacteriol 194(15):3938–3949

    Article  PubMed  CAS  Google Scholar 

  57. Tullius MV, Harth G, Horwitz MA (2001) High extracellular levels of Mycobacterium tuberculosis glutamine synthetase and superoxide dismutase in actively growing cultures are due to high expression and extracellular stability rather than to a protein-specific export mechanism. Infect Immun 69(10):6348–6363

    Article  PubMed  CAS  Google Scholar 

  58. Vanet A, Labigne A (1998) Evidence for specific secretion rather than autolysis in the release of some Helicobacter pylori proteins. Infect Immun 66(3):1023–1027

    PubMed  CAS  Google Scholar 

  59. Vitikainen M, Lappalainen I, Seppala R, Antelmann H, Boer H, Taira S, Savilahti H, Hecker M, Vihinen M, Sarvas M, Kontinen VP (2004) Structure function analysis of PrsA reveals roles for the parvulin-like and flanking N- and C-terminal domains in protein folding and secretion in Bacillus subtilis. J Biol Chem 279:19302–19314

    Article  PubMed  CAS  Google Scholar 

  60. von Heijne G (1990) Protein targeting signals. Curr Oppin Cell Biol 2:604–608

    Article  Google Scholar 

  61. von Heijne G (1998) Life and death of a signal peptide. Nature 396:111–113

    Article  Google Scholar 

  62. Walz A, Mujer CV, Connolly JP, Alefantis T, Chafin R, Dake C, Whittington J, Kumar SP, Khan AS, DelVecchio VG (2007) Bacillus anthracis secretome time course under host-simulated conditions and identification of immunogenic proteins. Proteome Sci 5:11

    Article  PubMed  Google Scholar 

  63. Xia XX, Han MJ, Lee SY, Yoo JS (2008) Comparison of the extracellular proteomes of Escherichia coli B and K-12 strains during high cell density cultivation. Proteomics 8(10):2089–2103

    Article  PubMed  CAS  Google Scholar 

  64. Yang CK, Ewis HE, Zhang X, Lu CD, Hu HJ, Pan Y, Abdelal AT, Tai PC (2011) Nonclassical protein secretion by Bacillus subtilis in the stationary phase is not due to cell lysis. J Bacteriol 193:5607–5615

    Article  PubMed  CAS  Google Scholar 

  65. Ziebandt AK, Becher D, Ohlsen K, Hacker J, Hecker M, Engelmann S (2004) The influence of agr and sigma B in growth phase dependent regulation of virulence factors in Staphylococcus aureus. Proteomics 4(10):3034–3047

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Science Fund for Distinguished Young Scholars (31125021), the National High Technology Research and Development Program of China (2011AA100905), the National Natural Science Foundation of China (No. 31171636, No. 31000752), the Key program of National Natural Science Foundation of China (No. 20836003), the National Basic Research Program of China 973 Program (2012CB720802), the 111 project B07029, and the Fundamental Research Funds for the Central Universities (No. JUSRP51320B).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hao Zhang or Wei Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, G., Chen, H., Xia, Y. et al. How are the Non-classically Secreted Bacterial Proteins Released into the Extracellular Milieu?. Curr Microbiol 67, 688–695 (2013). https://doi.org/10.1007/s00284-013-0422-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-013-0422-6

Keywords

Navigation