Skip to main content
Log in

The relationship between insecticidal effects and chitinase activities of Coleopteran-originated entomopathogens and their chitinolytic profile

  • Original Article
  • Published:
Annals of Microbiology Aims and scope Submit manuscript

Abstract

Peritrophic membrane (PM) is present in most insects’ midgut and acts as a mechanical barrier to protect the epithelium from various harmful factors such as pathogens or toxins. Chitinase is a virulence factor due to its ability to degrade the chitin content of PM. Therefore, chitinase is a mediator for easier binding of toxins to gut epithelium and intercepting nutritional absorption in the midgut. One hundred and eight bacterial isolates derived from microbial flora of coleopteran pests were screened to determine chitin-producing entomopathogenic bacteria. The M9 chitin–-agar method and polymerase chain reaction with specific primers for a conserved domain of chitinase genes indicated that 23 of the 108 isolates have chitinase activity. The chitinase activities of the chitinase-positive bacteria were measured. We compared these results with the insecticidal activities results to determine, statistically, the potential relationship between the chitinase activities and the insecticidal activity. Consequently, 21.3% of bacterial isolates showed chitinolytic ability and among these the chitinase-positive bacteria, Serratia marcescens, was found the most active one in the M9-CAD method. More importantly, our study indicated a very strong positive correlation between the insecticidal activities of isolates and the chitinase activities with the M9-CAD method (r 2 = 0.96, p ≤ 0.01), but not with the DNS method (r 2 = −0.279, p ≤ 0.01). This strong relationship of entomopathogens has a high potential for biocontrol of Coleopteran pests.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Ajit NS, Verma R, Shanmugam V (2006) Extracellular chitinases of fluorescent Pseudomonads antifungal to Fusarium oxysporum f. sp. dianthi causing carnation wilt. Curr Microbiol 52:310–316

    Article  PubMed  CAS  Google Scholar 

  • Bahar AA, Demirbag Z (2007) Isolation of pathogenic bacteria from Oberea linearis (Coleoptera: Cerambycidae). Biologia 62:13–18

    Article  CAS  Google Scholar 

  • Brurberg MB, Synstad B, Klemsdal SS, van Aalten DMF, Sundheim L, Eijsink VGH (2001) Chitinases from Serratia marcescens. Recent Res Dev Microbiol 5:187–204

    CAS  Google Scholar 

  • Demir İ, Sezen K, Demirbağ Z (2002) The first study on bacterial flora and biological control agent on Anoplus roboris (Sufr., Coleoptera). J Microbiol 40:104–108

    Google Scholar 

  • Downing KJ, Leslie G, Thomson JA (2000) Biocontrol of the Sugarcane Borer Eldana saccharina by expression of the Bacillus thuringiensis cry1Ac7 and Serratia marcescens chiA genes in sugarcane–associated bacteria. Appl Environ Microbiol 66:2804–2810

    Article  PubMed  CAS  Google Scholar 

  • Duo-Chuan L (2006) Review of fungal chitinases. Mycopathology 161:345–360

    Article  Google Scholar 

  • El-Tarabilya KA, Soliman MH, Nassar AH, Al-Hassani HA, Sivasithamparam K, McKenna F, Hardy GEStJ (2000) Biological control of Sclerotinia minor using a chitinolytic bacterium and actinomycetes. Plant Pathol 49:573–583

    Article  Google Scholar 

  • Granados RR, Fu Y, Corsaro B, Gooday GW (2001) Enhancement of Bacillus thuringiensis toxicity to lepidopterus species with the enhancin from Trichoplusia ni granulovirus. Biol Control 20:15–159

    Article  Google Scholar 

  • Hsu SC, Lockwood JL (1975) Powdered chitin agar as a selective medium for enumeration of actinomycetes in water and soil. Appl Microbiol 29:422–426

    PubMed  CAS  Google Scholar 

  • Huber M, Cabib E, Miller LH (1991) Malaria parasite chitinase and penetration of the mosquito peritrophic membrane (Plasmodium gallinaceum / Aedes aegypti / vector competence). Microbiology 88:2807–2810

    CAS  Google Scholar 

  • Jolles P, and Muzzarelli RAA (1999) Chitin and chitinases. Birkhauser, Berlin, pp 159–160

  • Khmel IA, Sorokina TA, Lemanova NB, Lipasova VA, Metlitski OZ, Burdeinaya TV, Chernin LS (1998) Biological control of crown gall in grapevine and raspberry by two Pseudomonas strains with a wide spectrum of antagonistic activity. Biocontrol Sci Technol 8:45–57

    Article  Google Scholar 

  • Kramer KJ, Muthukrishnanm S (1997) Insect chitinases: molecular biology and potential use as biopesticides. Insect Biochem Mol Biol 27:887–900

    Article  PubMed  CAS  Google Scholar 

  • Langer RC, Hayward RE, Tsuboi T, Tachibana M, Torii M, Vinetz JM (2000) Micronemal transport of Plasmodium ookinete chitinases to the electron–dense area of the apical complex for extracellular secretion. Inf Immun 68:6461–6465

    Article  CAS  Google Scholar 

  • Liebherr JK, McHugh JV (2003) Coleoptera (beetles, weevils, fireflies). In: Resh VH, Cardé RT (eds) Encyclopedia of Insects. Academic, San Diego

    Google Scholar 

  • Merzendorfer H, Zimoch L (2003) Chitin metabolism in insects: structure, function and regulation of chitin synthases and chitinases. J Exp Biol 206:4393–4412

    Article  PubMed  CAS  Google Scholar 

  • Moar WJ, Pusztzai-Carey M, Mack TP (1995) Toxicity of purified proteins and the HD–1 strain from Bacillus thuringiensis againt lesser cornstalk borer (Lepidoptera: Pyralidae). J Econ Entomol 88:606–609

    CAS  Google Scholar 

  • Monreal J, Reese ET (1969) The chitinase of Serratia marcescens. Can J Microbiol 15:689–696

    Article  PubMed  CAS  Google Scholar 

  • Muratoğlu H, Demirbağ Z, Sezen K (2011a) The first investigation of the diversity of bacteria associated with Leptinotarsa decemlineata (Say) (Col.: Chrysomelidae). Biologia 66:288–293

    Article  Google Scholar 

  • Muratoğlu H, Sezen K, Demirbağ Z (2011b) Determination and pathogenicity of the bacterial flora associated to the spruce bark beetle, Ips typographus L. (Coleoptera: Curculionidae, Scolytinae). Turkish J Biol 35:1, 9–20

    Google Scholar 

  • Nowierski RM (1984) Some basic aspects of biological weed control. Proceedings of the Leafy Spurge Annual Meeting, 23–26

  • Otsu Y, Matsuda Y, Shimizu H, Ueki H, Mori H, Fujiwara K, Nakajima T, Miwa A, Nonomura T, Sakuratani Y, Tosa Y, Mayama S, Toyoda H (2003) Biological control of phytophagous ladybird beetles Epilachna vigintioctopunctata (Col., Coccinellidae) by chitinolytic phylloplane bacteria Alcaligenes paradoxus entrapped in alginate beads. J Appl Entomol 127:441–446

    Article  Google Scholar 

  • Regev A, Keller M, Strizhov N, Sneh B, Prudovsky E, Chet I, Ginzberg I, Koncz-Kalman Z, Koncz C, Schell J, Zilberstein A (1996) Synergistic activity of a Bacillus thuringiensis d–endotoxin and a bacterial endochitinase against Spodoptera littoralis larvae. Appl Environ Microbiol 62:3581–3586

    PubMed  CAS  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  • Sampson MN, Gooday GW (1998) Involvement of chitinases of Bacillus thuringiensis during pathogenesis in insects. Microbiology 144:2189–2194

    Article  PubMed  CAS  Google Scholar 

  • Sezen K, Demirbağ Z (1999) Isolation and insecticidal activity of some bacteria from the hazelnut beetle (Balaninus nucum L.). Appl Entomol Zool 34:85–89

    Google Scholar 

  • Sezen K, Yaman M, Demirbağ Z (2001) Insecticidal potential of Serratia marcescens Bn10. Biologia 56:333–336

    CAS  Google Scholar 

  • Sezen K, Demir İ, Katı H, Demirbağ Z (2005) Investigations on bacteria as a potential biological control agent of summer chafer, Amphimallon solstitiale L. (Coleoptera: Scarabaeidae). J Microbiol 43:463–468

    PubMed  CAS  Google Scholar 

  • Sezen K, Demir İ, Demirbağ Z (2007) Identification and pathogenicity of entomopathogenic bacteria from common cockchafer, Melolontha melolontha L. (Col., Scarabaeidae). N Z J Crop Hortic Sci 35:79–85

    Article  Google Scholar 

  • Sezen K, Katı H, Nalçacıoğlu R, Muratoğlu H, Demirbağ Z (2008) Identification and pathogenicity of bacteria from european shot-hole borer, Xyleborus dispar Fabricius (Coleoptera: Scolytidae). Ann Microbiol 58:173–179

    Article  CAS  Google Scholar 

  • Sneh B, Schuster S, Gross S (1983) Improvement of the insecticidal activity of Bacillus thuringiensis var. entomocidus on larvae of Spodoptera littoralis (Lepidoptera, Noctuidae) by addition of chitinolytic bacteria, a phagostimulant and a UVprotectant. Z Angew Entomol 96:77–83

    Article  Google Scholar 

  • Tu S, Qiu X, Cao L, Han R, Zhang Y, Liu X (2010) Expression and characterization of the chitinases from Serratia marcescens GEI strain for the control of Varroa destructor, a honey bee parasite. J Invert Pathol 104:75–82

    Article  CAS  Google Scholar 

  • Williamson N, Brian P, Wellington EMH (2000) Molecular detection of bacterial and streptomycete chitinases in the environment. Antonie van Leeuwenhoek 78:315–321

    Article  PubMed  CAS  Google Scholar 

  • Wiwat C, Lertcanawanichakul M, Siwayapram P, Pantuwatana S, Bhumiratana A (1996) Expression of chitinase encoding genes from Pseudomonas maltophila in Bacillus thuringiensis subsp. Israelensis. Gene 179:119–126

    Article  PubMed  CAS  Google Scholar 

  • Yanhua F, Fang W, Guo S, Pei X, Zhang Y, Xiao Y, Li D, Jin K, Bidochka MJ, Peil Y (2007) Increased insect virulence in Beauveria bassiana strains over expressing an engineered chitinase. Appl Environ Microbiol 73:295–302

    Article  Google Scholar 

  • Yılmaz H, Sezen K, Katı H, Demirbağ Z (2006) Isolation and identification of bacteria associated with European spruce bark beetle, Dendroctonus micans Kugelann (Coleoptera, Scolytidae). Biologia 61:679–686

    Article  Google Scholar 

Download references

Acknowledgment

This work was supported by The Scientific and Technological Research Council of Turkey (107 T926). We thank Dr. Cemal Sandalli for his support during this investigation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Remziye Nalçacioğlu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bahar, A.A., Sezen, K., Demirbağ, Z. et al. The relationship between insecticidal effects and chitinase activities of Coleopteran-originated entomopathogens and their chitinolytic profile. Ann Microbiol 62, 647–653 (2012). https://doi.org/10.1007/s13213-011-0301-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13213-011-0301-y

Keywords

Navigation