Skip to main content
Log in

Expression of CspE by a Psychrotrophic Bacterium Enterobacter ludwigii PAS1, Isolated from Indian Himalayan Soil and In silico Protein Modelling, Prediction of Conserved Residues and Active Sites

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Proteome analysis of Enterobacter ludwigii PAS1 provide a powerful set of tool to study the cold shock proteins along with that combination of bioinformatics is useful for interpretation of comparative results from many species. There is a considerable interest in the use of psychrotrophic bacteria for nitrogen fixation, especially at hilly regions, thus better understanding of cold adaptation mechanisms too. The psychrotrophic E. ludwigii PAS1 grown at 30 and 4 °C, isolated from Himalaya soil was undertaken for proteomic responses during optimal and cold shock conditions. Comparative proteomic analyses using two-dimensional gel electrophoresis (2-DE) and MALDI-TOF/TOF MS revealed the presence of Cold shock protein E (CspE). Three-dimensional structure of CspE of E. ludwigii PAS1 divulge the presence of five antiparallel β-sheets forming a β-barrel structure with surface exposed aromatic and basic residues that were responsible for nucleic acid binding and also reveals the presence of highly conserved nucleic acid-binding motifs RNP1 and RNP2 in Csp family.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    PubMed  CAS  Google Scholar 

  2. Altschul SF, Madden TL, Schaffer AA, Zhang J, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  PubMed  CAS  Google Scholar 

  3. Amaro AM, Chamorro D, Seeger M, Arredondo R, Peirano I, Jerez CA (1991) Effect of external pH perturbations on in vivo protein synthesis by the acidophilic bacterium Thiobacillus ferrooxidans. J Bacteriol 173:910–915

    PubMed  CAS  Google Scholar 

  4. Bae W, Phadtare S, Severinov K, Inouye M (1999) Characterization of Escherichia coli cspE, whose product negatively regulates transcription of cspA, the gene for the major cold shock protein. Mol Microbiol 31:1429–1441

    Article  PubMed  CAS  Google Scholar 

  5. Benkert P, Biasini M, Schwede T (2011) Toward the estimation of the absolute quality of individual protein structure models. Bioinformatics 27:343–350

    Article  PubMed  CAS  Google Scholar 

  6. Bordoli L, Kiefeer F, Arnold K, Benkert P, Battey J, Schwede T (2009) Protein structure homology modelling using SWISS-MODEL workspace. Nat protoc 4:1–13

    Article  PubMed  CAS  Google Scholar 

  7. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  8. Chan YC, Wiedmann M (2009) Physiology and genetics of Listeria monocytogenes survival and growth at cold temperatures. Crit Rev Food Sci Nutr 49:237–253

    Article  PubMed  CAS  Google Scholar 

  9. Ermolenko DN, Makhatadzea GI (2002) Bacterial cold-shock proteins. Cell Mol Life Sci 59:1902–1913

    Article  PubMed  CAS  Google Scholar 

  10. Feng Y, Huang H, Liao J, Cohen SN (2001) Escherichia coli poly(A)-binding proteins that interact with components of degradosomes or impede RNA decay mediated by polynucleotide phosphorylase and RNase E. J Biol Chem 276:31651–31656

    Article  PubMed  CAS  Google Scholar 

  11. Garnier M, Sebastien M, Didier C, Marie FP, Francoise L, Odile T (2010) Adaptation to cold and proteomic responses of the psychrotrophic biopreservative Lactococcus piscium strain CNCM I-4031. Appl Envtl Microbiol 76:8011–8018

    Article  CAS  Google Scholar 

  12. Gualerzi CO, Giuliodori AM, Pon CL (2003) Transcriptional and post-transcriptional control of cold-shock genes. J Mol Biol 331:527–539

    Article  PubMed  CAS  Google Scholar 

  13. Harrington EW, Trun NJ (1997) Unfolding of the bacterial nucleoid both in vivo and in vitro as a result of exposure to camphor. J Bacteriol 179:2435–2439

    PubMed  CAS  Google Scholar 

  14. Horn G, Hofweber W, Krener W, Kalbitzer HR (2007) Structure and function of bacterial cold shock proteins. Cell Mol Life Sci 64:1457–1470

    Article  PubMed  CAS  Google Scholar 

  15. Hu KH, Liu E, Dean K, Gingras M, Graff WD, Trun NJ (1996) Overproduction of three genes leads to camphor resistance and chromosome condensation in Escherichia coli. Genetics 143:1521–1532

    PubMed  CAS  Google Scholar 

  16. Jung YH, Yi Ji-Yeun, Hyun JJ, Yoo KL, Hong KL, Mahendran CN, Ji-hyun U, Seul J, Eun JJ, Hana I (2010) Overexpression of Cold Shock Protein A of Psychromonas arctica KOPRI 22215 confers cold-resistance. Protein J 29:136–142

    Article  PubMed  CAS  Google Scholar 

  17. Mega R, Manzoku M, Shinkai A, Nakagawa N, Kuramitsu S, Masui R (2010) Very rapid induction of a cold shock protein by temperature downshifts in Thermus thermophilus. Biochem Biophy Res Comm 399:336–340

    Article  CAS  Google Scholar 

  18. Moon C, Jeong K, Kim HJ, Heo Y, Kim Y (2009) Recombinant expression, isotope labeling and purification of cold shock protein from Colwellia psychrerythraea for NMR study. Bull Korean Chem Soc 30:2647–2650

    Article  CAS  Google Scholar 

  19. Novo MT, Junior OG, Ottoboni LM (2003) Protein profile of Acidithiobacillus ferrooxidans exhibiting different levels of tolerance to metal sulfates. Curr Microbiol 47:492–496

    Article  PubMed  CAS  Google Scholar 

  20. O’Farrell PH (1975) High resolution two-dimensional electrophoresis of proteins. J Biol Chem 250:4007–4021

    PubMed  Google Scholar 

  21. Phadtare S (2004) Recent developments in bacterial Cold-shock response. Curr Issues Mol Biol 6:125–136

    PubMed  CAS  Google Scholar 

  22. Phadtare S, Inouye M (2001) Role of CspC and CspE in regulation of expression of RpoS and UspA, the stress response proteins in Escherichia coli. J Bacteriol 183:1205–1214

    Article  PubMed  CAS  Google Scholar 

  23. Phadtare S, Inouye M, Severinov K (2002) The nucleic acid melting activity of Escherichia coli CspE is critical for transcription antitermination and cold acclimation of cells. J Biol Chem 277:7239–7245

    Article  PubMed  CAS  Google Scholar 

  24. Rodrigues DF, Tiedje JM (2008) Coping with our cold planet. Appl Envtl Microbiol 74:1677–1686

    Article  CAS  Google Scholar 

  25. Schmid B, Jochen K, Eveline R, Martin JL, Roger S, Taurai T (2009) Role of cold shock proteins in growth of Listeria monocytogenes under cold and osmotic stress conditions. Appl Environ Microbiol 75:1621–1627

    Article  PubMed  CAS  Google Scholar 

  26. Schwede TJ, Kopp NG, Peitsch MC (2003) SWISS-MODEL: An automated protein homology-modeling server. Nucleic Acids Res 31:3381–3385

    Article  PubMed  CAS  Google Scholar 

  27. Seeger M, Jerez CA (1993) Response of Thiobacillus ferrooxidans to phosphate limitation. FEMS Microbiol Rev 11:37–42

    Article  CAS  Google Scholar 

  28. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequences alignment aided by quality analysis tools. Nucl Acids Res 25:4876–4882

    Article  PubMed  CAS  Google Scholar 

  29. Varela P, Jerez CA (1992) Identification and characterization of GroEL and DnaK homologues in Thiobacillus ferrooxidans. FEMS Microbiol Lett 77:149–153

    Article  PubMed  CAS  Google Scholar 

  30. Vera M, Guiliani N, Jerez CA (2003) Proteomic and genomic analysis of the phosphate starvation response of Acidithiobacillus ferrooxidans. Hydrometallurgy 71:125–132

    Article  CAS  Google Scholar 

  31. Wouters JA, Sanders JW, Kok J, de Vos WM, Kuipers OP, Abee T (1998) Clustered organization and transcriptional analysis of a family of five csp genes of Lactococcus lactis MG1363. Microbiology 144:2885–2893

    Article  PubMed  CAS  Google Scholar 

  32. Yamanaka K, Mitani T, Ogura T, Niki H, Hiraga S (1994) Cloning, sequencing, and characterization of multicopy suppressors of a mukB mutation in Escherichia coli. Mol Microbiol 13:301–312

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by National Bureau of Agriculturally Important Microorganisms (NBAIM)/Indian Council of Agricultural Research (ICAR) Grant to RG. We also acknowledge Director, CSIR-CIMAP, Lucknow for providing the lab facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Premalatha Kandasamy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kandasamy, P., Chaturvedi, N., Sisodia, B.S. et al. Expression of CspE by a Psychrotrophic Bacterium Enterobacter ludwigii PAS1, Isolated from Indian Himalayan Soil and In silico Protein Modelling, Prediction of Conserved Residues and Active Sites. Curr Microbiol 66, 507–514 (2013). https://doi.org/10.1007/s00284-013-0304-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-013-0304-y

Keywords

Navigation