Skip to main content
Log in

Two Types of Phytases (Histidine Acid Phytase and β-Propeller Phytase) in Serratia sp. TN49 from the Gut of Batocera horsfieldi (Coleoptera) Larvae

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Microbial phytases play a major role in the mineralization of organic phosphorous, especially in symbiotic plants and animals. In this study, we identified two types of phytases in Serratia sp. TN49 that was harbored in the gut of Batocera horsfieldi (Coleoptera) larvae. The two phytases, an acidic histidine acid phosphatase (PhyH49) and an alkaline β-propeller phytase (PhyB49), shared low identities with known phytases (61% at most). PhyH49 and PhyB49 produced in Escherichia coli exhibited maximal activities at pH 5.0 (60°C) and pH 7.5–8.0 (45°C), respectively, and are complementary in phytate degradation over the pH range 2.0–9.0. Serratia sp. TN49 harboring both PhyH49 and PhyB49 might make it more adaptive to environment change, corresponding to the evolution trend of microorganism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Cheng C, Lim B (2006) β-Propeller phytases in the aquatic environment. Arch Microbiol 185:1–13

    Article  PubMed  CAS  Google Scholar 

  2. Devillard E, Newbold CJ, Scott KP et al (1999) A xylanase produced by the rumen anaerobic protozoan Polyplastron multivesiculatum shows close sequence similarity to family 11 xylanases from Gram–positive bacteria. FEMS Microbiol Lett 181:145–152

    Article  PubMed  CAS  Google Scholar 

  3. Dillon R, Dillon V (2004) The gut bacteria of insects: nonpathogenic interactions. Ann Rev Entomol 49:71–92

    Article  CAS  Google Scholar 

  4. Fu S, Sun J, Qian L, Li Z (2008) Bacillus phytases: present scenario and future perspectives. Appl Biochem Biophys 151:1–8

    CAS  Google Scholar 

  5. Garcia-Vallve S, Romeu A, Palau J (2000) Horizontal gene transfer of glycosyl hydrolases of the rumen fungi. Mol Biol Evol 17:352–361

    PubMed  CAS  Google Scholar 

  6. Greiner R, Konietzny U, Jany KD (1993) Purification and characterization of two phytases from Escherichia coli. Arch Biochem Biophys 303:107–113

    Article  PubMed  CAS  Google Scholar 

  7. Huang H, Luo H, Yang P et al (2006) A novel phytase with preferable characteristics from Yersinia intermedia. Biochem Biophys Res Commun 350:884–889

    Article  PubMed  CAS  Google Scholar 

  8. Huang H, Shi P, Wang Y et al (2009) Diversity of β-propeller phytase genes in the intestinal contents of grass carp provides insight into the release of major phosphorus from phytate in nature. Appl Environ Microbiol 75:1508–1516

    Article  PubMed  CAS  Google Scholar 

  9. Huang H, Shao N, Wang Y et al (2009) A novel beta-propeller phytase from Pedobacter nyackensis MJ11 CGMCC 2503 with potential as an aquatic feed additive. Appl Microbiol Biotechnol 83:249–259

    Article  PubMed  CAS  Google Scholar 

  10. Huang H, Zhang R, Fu D et al (2010) Diversity, abundance and characterization of ruminal cysteine phytases suggest their important role in phytate degradation. Environ Microbiol 13:747–757

    Article  PubMed  Google Scholar 

  11. Jorquera M, Martinez O, Maruyama F et al (2008) Current and future biotechnological applications of bacterial phytases and phytase-producing bacteria. Microb Environ 23:182–191

    Article  Google Scholar 

  12. Lim B, Yeung P, Cheng C, Hill J (2007) Distribution and diversity of phytate-mineralizing bacteria. ISME J 1:321–330

    PubMed  CAS  Google Scholar 

  13. Mullaney E, Ullah A (2003) The term phytase comprises several different classes of enzymes. Biochem Biophys Res Commun 312:179–184

    Article  PubMed  CAS  Google Scholar 

  14. Oh BC, Choi WC, Park S, Kim YO, Oh TK (2004) Biochemical properties and substrate specificities of alkaline and histidine acid phytases. Appl Microbiol Biotechnol 63:362–372

    Article  PubMed  CAS  Google Scholar 

  15. Sajidan A, Farouk A, Greiner R et al (2004) Molecular and physiological characterisation of a 3-phytase from soil bacterium Klebsiella sp. ASR1. Appl Microbiol Biotechnol 65:110–118

    Article  PubMed  CAS  Google Scholar 

  16. Schloss PD, Delalibera I, Handelsman J, Raffa KF (2006) Bacteria associated with the guts of two wood-boring beetles: Anoplophora glabripennis and Saperda vestita (Cerambycidae). Environ Entomol 35:625–629

    Article  Google Scholar 

  17. Shedova E, Lipasova V, Velikodvorskaya G et al (2008) Phytase activity and its regulation in a rhizospheric strain of Serratia plymuthica. Folia Microbiol (Praha) 53:110–114

    Article  CAS  Google Scholar 

  18. Timmis KN (2002) Pseudomonas putida: a cosmopolitan opportunist par excellence. Environ Microbiol 4:779–781

    Article  PubMed  Google Scholar 

  19. Turner BL, Papházy MJ, Haygarth PM, McKelvie ID (2002) Inositol phosphates in the environment. Philos Trans R Soc Lond B Biol Sci 357:449–469

    Article  PubMed  CAS  Google Scholar 

  20. Watanabe K, Sato M (1998) Plasmid-mediated gene transfer between insect-resident bacteria, Enterobacter cloacae, and plant-epiphytic bacteria, Erwinia herbicola, in guts of silkworm larvae. Curr Microbiol 37:352–355

    Article  PubMed  CAS  Google Scholar 

  21. Wodzinski R, Ullah A (1996) Phytase. Adv Appl Microbiol 42:263–302

    Article  PubMed  CAS  Google Scholar 

  22. Zhou J, Zhang R, Shi P et al (2011) A novel low-temperature-active β-glucosidase from symbiotic Serratia sp. TN49 reveals four essential positions for substrate accommodation. Appl Microbiol Biotechnol. doi:10.1007/s00253-011-3323-2

Download references

Acknowledgment

This research was supported by the National Natural Science Foundation of China (31001025) and the China Modern Agriculture Research System (CARS-42).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bin Yao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, R., Yang, P., Huang, H. et al. Two Types of Phytases (Histidine Acid Phytase and β-Propeller Phytase) in Serratia sp. TN49 from the Gut of Batocera horsfieldi (Coleoptera) Larvae. Curr Microbiol 63, 408 (2011). https://doi.org/10.1007/s00284-011-9995-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00284-011-9995-0

Keywords

Navigation