Skip to main content
Log in

Identification of Yeast Associated with the Planthopper, Perkinsiella saccharicida: Potential Applications for Fiji Leaf Gall Control

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Yeasts associate with numerous insects, and they can assist the metabolic processes within their hosts. Two distinct yeasts were identified by PCR within the planthopper Perkinsiella saccharicida, the vector of Fiji disease virus to sugarcane. The utility of both microbes for potential paratransgenic approaches to control Fiji leaf gall (FLG) was assessed. Phylogenetic analysis showed one of the microbes is related to yeast-like symbionts from the planthoppers: Laodelphax striatellus, Nilaparvata lugens, and Sogetella furcifera. The second yeast was a member of the Candida genus, a group that has been identified in beetles and recently described in planthoppers. Microscopy revealed the presence of yeast in the fat body of P. saccharicida. The Candida yeast was cultured, and transformation was accomplished by electroporation of Candida albicans codon optimized plasmids, designed to integrate into the genome via homologous recombination. Transgenic lines conferred resistance to the antibiotic nourseothricin and expression of green fluorescent protein was observed in a proportion of the yeast cells. Stably transformed yeast lines could not be isolated as the integrative plasmids presumably replicated within the yeast without integration into the genome. If stable transformation can be achieved, then this yeast may be useful as an agent for a paratransgenic control of FLG.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Aksoy S, O’Neill SL, Maudlin I, Dale C, Robinson AS (2001) Prospects for control of African trypanosomiasis by tsetse vector manipulation. Trends Parasitol 17:29–35

    Article  PubMed  CAS  Google Scholar 

  2. Ammar ED, Nault LR (2002) Virus transmission by leafhoppers, planthoppers and treehoppers (Auchenorrhyncha, Homoptera). Adv Bot Res 36:141–167

    Article  Google Scholar 

  3. Bai X, Dong SZ, Pang K, Bian YL, Yu XP (2010) Identification of one yeast-like symbiont from the small brown planthopper, Laodelphax striatellus. Acta Entomol Sinica 53:640–646

    CAS  Google Scholar 

  4. Barelle CJ, Manson CL, MacCallum DM, Odds FC, Gow NA, Brown AJ (2004) GFP as a quantitative reporter of gene regulation in Candida albicans. Yeast 21:333–340

    Article  PubMed  CAS  Google Scholar 

  5. Beard BC, Cordon-Rosales C, Durvasula RV (2002) Bacterial symbionts of the triatominae and their potential use in control of Chagas disease transmission. Annu Rev Entomol 47:123–141

    Article  PubMed  CAS  Google Scholar 

  6. Beard CB, Durvasula RV, Richards FF (1998) Bacterial symbiosis in arthropods and the control of disease transmission. Emerg Infect Dis 4:581–591

    Article  PubMed  CAS  Google Scholar 

  7. Bogdanova AI, Agaphonov MO, Ter-Avanesyan MD (2000) Plasmid instability in methylotrophic yeast Hansenula polymorpha: the capture of chromosomal DNA fragments by integrative plasmids. Mol Biol 34:22–28

    CAS  Google Scholar 

  8. Bogdanova AI, Agaphonov MO, Teravanesyan MD (1995) Plasmid reorganization during integrative transformation in Hansenula polymorpha. Yeast 11:343–353

    Article  PubMed  CAS  Google Scholar 

  9. Boretsky YR, Pynyaha YV, Boretsky VY, Kutsyaba VI, Protchenko OV, Philpott CC, Sibirny AA (2007) Development of a transformation system for gene knock-out in the flavinogenic yeast Pichia guilliermondii. J Microbiol Meth 70:13–19

    Article  CAS  Google Scholar 

  10. Broco N, Tenreiro S, Viegas CA, Sa-Correia I (1999) FLR1 gene (ORF YBR008c) is required for benomyl and methotrexate resistance in Saccharomyces cerevisiae and its benomyl-induced expression is dependent on Pdr3 transcriptional regulator. Yeast 15:1595–1608

    Article  PubMed  CAS  Google Scholar 

  11. Cebollero E, Gonzalez R (2004) Comparison of two alternative dominant selectable markers for wine yeast transformation. Appl Environ Microbiol 70:7018–7023

    Article  PubMed  CAS  Google Scholar 

  12. Chen W, Hoy JW (1993) Molecular and morphological comparison of Pythium arrhenomanes and P. graminicola. Mycol Res 97:1371–1378

    Article  CAS  Google Scholar 

  13. Cheng DJ, Hou RF (1996) Ultrastructure of the yeast-like endocytobiont in the brown planthopper, Nilaparvata lugens (Stal) (Homoptera:Delpahacidae). Endocyt Cell Res 11:107–117

    Google Scholar 

  14. Cormack BP, Falkow S (1999) Efficient homologous and illegitimate recombination in the opportunistic yeast pathogen Candida glabrata. Genetics 151:979–987

    PubMed  CAS  Google Scholar 

  15. Dmytruk KV, Voronovsky AY, Sibirny AA (2006) Insertion mutagenesis of the yeast Candida famata (Debaryomyces hansenii) by random integration of linear DNA fragments. Curr Genet 50:183–191

    Article  PubMed  CAS  Google Scholar 

  16. Dong S, Pang K, Bai X, Yu X, Hao P (2011) Identification of two species of yeast-like symbiotes in the brown planthopper, Nilaparvata lugens. Curr Microbiol 62:1133–1138

    Article  PubMed  CAS  Google Scholar 

  17. Durvasula RV, Gumbs A, Panackal A, Kruglov O, Aksoy S, Merrifield RB, Richards FF, Beard CB (1997) Prevention of insect-borne disease: an approach using transgenic symbiotic bacteria. Proc Natl Acad Sci USA 94:3274–3278

    Article  PubMed  CAS  Google Scholar 

  18. Egan BT, Ryan CC, Francki RIB (1989) Fiji disease. In: Ricaud C, Egan BT, Gillaspie AGJ, Hughes CG (eds) Diseases of sugarcane—major diseases. Elsevier, Amsterdam, pp 263–288

    Google Scholar 

  19. Favia G, Ricci I, Damiani C, Raddadi N, Crotti E, Marzorati M, Rizzi A, Urso R, Brusetti L, Borin S, Mora D, Scuppa P, Pasqualini L, Clementi E, Genchi M, Corona S, Negri I, Grandi G, Alma A, Kramer L, Esposito F, Bandi C, Sacchi L, Daffonchio D (2007) Bacteria of the genus Asaia stably associate with Anopheles stephensi, an Asian malarial mosquito vector. Proc Natl Acad Sci USA 104:9047–9051

    Article  PubMed  CAS  Google Scholar 

  20. Goldstein AL, McCusker JH (1999) Three new dominant drug resistance cassettes for gene disruption in Saccharomyces cerevisiae. Yeast 15:1541–1553

    Article  PubMed  CAS  Google Scholar 

  21. Hiep TT, Noskov VN, Pavlov YI (1993) Transformation in the methylotrophic yeast Pichia methanolica utilizing homologous ade1 and heterologous Saccharomyces cerevisiae ade2 and leu2 genes as genetic-markers. Yeast 9:1189–1197

    Article  PubMed  CAS  Google Scholar 

  22. Hoffman CS, Winston F (1987) A ten-minute DNA preparation from yeast efficiently releases autonomous plasmids for transformation of Escherichia coli. Gene 57:267–272

    Article  PubMed  CAS  Google Scholar 

  23. Huelsenbeck JP, Ronquist F (2001) MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17:754–755

    Article  PubMed  CAS  Google Scholar 

  24. Hughes GL, Allsopp PG, Brumbley SM, Johnson KN, O’Neill SL (2008) In vitro rearing of Perkinsiella saccharicida and the use of leaf segments to assay Fiji disease virus transmission. Phytopathology 98:810–814

    Article  PubMed  CAS  Google Scholar 

  25. Hughes GL, Allsopp PG, Brumbley SM, Woolfit M, McGraw EA, O’Neill SL (2011) Variable infection frequency and high diversity of multiple strains of Wolbachia pipientis in Perkinsiella planthoppers. Appl Environ Microbiol 77:2165–2168

    Article  PubMed  CAS  Google Scholar 

  26. Iwakiri R, Eguchi S, Noda Y, Adachi H, Yoda K (2005) Isolation and structural analysis of efficient autonomously replicating sequences (ARSs) of the yeast Candida utilis. Yeast 22:1049–1060

    Article  PubMed  CAS  Google Scholar 

  27. Kagayama K, Shiragami N, Nagamine T, Umehara T, Mitsui T (1993) Isolation and classification of intracellular symbiotes from the rice brown planthopper, Nilvaparvata lugens, based on analysis of 18S-ribosomal DNA. J Pesticide Sci 18:231–237

    Google Scholar 

  28. Kasuske A, Wedler H, Schulze S, Becher D (1992) Efficient electropulse transformation of intact Candida maltosa cells by different homologous vector plasmids. Yeast 8:691–697

    Article  PubMed  CAS  Google Scholar 

  29. Linville JG, Wells JD (2002) Surface sterilization of a maggot using bleach does not interfere with mitochondrial DNA analysis of crop contents. J Forensic Sci 47:1055–1059

    PubMed  CAS  Google Scholar 

  30. Morschhauser J, Michel S, Hacker J (1998) Expression of a chromosomally integrated, single-copy GFP gene in Candida albicans, and its use as a reporter of gene regulation. Mol Genet Genomics 257:412–420

    Article  CAS  Google Scholar 

  31. Mungomery RW, Bell AF (1933) Fiji disease of sugar-cane and its transmission. Div Pathol Bureau Sugar Exp Stn Bull 4

  32. Nasu S (1963) Studies on some leafhopper and planthoppers which transmit virus diseases of rice plants in Japan. Bull Kyushu Natl Agric Exp Stn 8:153–349

    Google Scholar 

  33. Nasu S, Kusumi T, Suwa Y, Kita H (1981) Symbiotes of planthoppers: II. Intracellular symbiotic microorganisms from the brown planthopper, Nilaparvata lugens Stal., and immunological comparison of the symbiotes associated with rice planthoppers (Hemiptera: Delphacidae). Appl Entomol Zool 16:88–93

    Google Scholar 

  34. Noda H (1977) Histological and histochemical observations of intracellular yeastlike symbiotes in the fat body of the small brown planthopper, Laodelphax striatellus (Homoptera: Delphacidae). Appl Entomol Zool 12:134–141

    Google Scholar 

  35. Noda H, Koizumi Y, Zhang Q, Deng K (2001) Infection density of Wolbachia and incompatibility level in two planthopper species, Laodelphax striatellus and Sogatella furcifera. Insect Biochem Mol Bio 31:727–737

    Article  CAS  Google Scholar 

  36. Ogata T, Okumura Y, Iimura Y, Obata T (1995) Development of an integrative DNA transformation system for the yeast Hansenula anomala. J Ferment Bioeng 79:1–5

    Article  CAS  Google Scholar 

  37. Page RDM (1996) Tree view: an application to display phylogenetic trees on personal computers. Comput Appl Biosci 12:357–358

    PubMed  CAS  Google Scholar 

  38. Posada D, Crandall KA (1998) Modeltest: testing the model of DNA substitution. Bioinformatics 14:817–818

    Article  PubMed  CAS  Google Scholar 

  39. Ricci I, Damiani C, Scuppa P, Mosca M, Crotti E, Rossi P, Rizzi A, Capone A, Gonella E, Ballarini P, Chouaia B, Sagnon NF, Esposito F, Alma A, Mandrioli M, Sacchi L, Bandi C, Daffonchio D, Favia G (2011) The yeast Wickerhamomyces anomalus (Pichia anomala) inhabits the midgut and reproductive system of the Asian malaria vector Anopheles stephensi. Environ Microbiol 13:911–921

    Article  PubMed  CAS  Google Scholar 

  40. Ricci I, Mosca M, Valzano M, Damiani C, Scuppa P, Rossi P, Crotti E, Cappelli A, Ulissi U, Capone A, Esposito F, Alma A, Mandrioli M, Sacchi L, Bandi C, Daffonchio D, Favia G (2010) Different mosquito species host Wickerhamomyces anomalus (Pichia anomala): perspectives on vector-borne diseases symbiotic control. Antonie Van Leeuwenhoek 99:43–50

    Article  PubMed  Google Scholar 

  41. Ronquist F, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574

    Article  PubMed  CAS  Google Scholar 

  42. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual. Cold Spring Harbour, USA

    Google Scholar 

  43. Sasaki T, Kawamura M, Ishikawa H (1996) Nitrogen recycling in the brown planthopper, Nilaparvata lugens: involvement of yeast-like endosymbionts in uric acid metabolism. J Insect Physiol 42:125–129

    Article  CAS  Google Scholar 

  44. Smith GR, Candy JM (2004) Improving Fiji disease resistance screening trails in sugarcane by considering virus transmission class and possible origin of Fiji disease virus. Aust J Agric Res 55:665–672

    Article  Google Scholar 

  45. Suh SO, Blackwell M (2004) Three new beetle-associated yeast species in the Pichia guilliermondii clade. FEMS Yeast Res 5:87–95

    Article  PubMed  CAS  Google Scholar 

  46. Suh SO, McHugh JV, Pollock DD, Blackwell M (2005) The beetle gut: a hyperdiverse source of novel yeasts. Mycol Res 109:261–265

    Article  PubMed  CAS  Google Scholar 

  47. Suh SO, Nguyen NH, Blackwell M (2005) Nine new Candida species near C. membranifaciens isolated from insects. Mycol Res 109:1045–1056

    Article  PubMed  CAS  Google Scholar 

  48. Suh SO, Noda H, Blackwell M (2001) Insect symbiosis: derivation of yeast-like endosymbionts within an entomopathogenic filamentous lineage. Mol Biol Evol 18:995–1000

    PubMed  CAS  Google Scholar 

  49. Tarutina MG, Tolstorukov II (2002) Formation of ARS-independent miniplasmids upon transformation of yeast Pichia methanolica with DNA molecules containing “transforming” and “nontransforming” genes. Russ J Genet 38:1226–1235

    Article  CAS  Google Scholar 

  50. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882

    Article  PubMed  CAS  Google Scholar 

  51. Vega FE, Dowd PF (2005) The role of yeasts as insect endosymbionts. In: Vega FE, Blackwell M (eds) Insect-fungal associations. Oxford University Press, Oxford

    Google Scholar 

  52. Wendt K, Jensen C, Tindall R, Katz M (2003) Comparison of conventional and microwave-assisted processing of mouse retinas for transmission electron microscopy. J Microsc 214:80–88

    Article  Google Scholar 

  53. White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR protocols: a guide to methods and applications. Academic Press, San Diego, pp 315–322

    Google Scholar 

  54. Wu S, Letchworth GJ (2004) High efficiency transformation by electroporation of Pichia pastoris pretreated with lithium acetate and dithiothreitol. Biotechniques 36:152–154

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank all the members of the O’Neill and McGraw laboratories for their technical assistance. Specifically, the authors are grateful to Dr Elizabeth McGraw for her assistance with phylogenetic analysis. Moreover, the authors thank Professor Alistair Brown and Professor Joachim Morschhauser for their generous gift of plasmids, and Dr James Frazer for his suggestions on experimental design and interpretation of results. This research was supported by a grant from the Australian Research Council Linkage in association with BSES Limited.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Scott L. O’Neill.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 33 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hughes, G.L., Allsopp, P.G., Webb, R.I. et al. Identification of Yeast Associated with the Planthopper, Perkinsiella saccharicida: Potential Applications for Fiji Leaf Gall Control. Curr Microbiol 63, 392 (2011). https://doi.org/10.1007/s00284-011-9990-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00284-011-9990-5

Keywords

Navigation