Skip to main content
Log in

Evaluation Antimicrobial and Antiadhesive Properties of the Biosurfactant Lunasan Produced by Candida sphaerica UCP 0995

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Different groups of biosurfactants exhibit diverse properties and display a variety of physiological functions in producer microorganisms; these include enhancing the solubility of hydrophobic/water-insoluble compound, heave metal binding, bacterial pathogenesis, cell adhesion and aggregation, quorum sensing and biofilm formation. Candida sphaerica was grown in a low cost medium, consisting of distilled water supplemented with 9% refinery residue of soybean oil and 9% corn steep liquor, for 144 h at 28°C and 150 rpm. The cell-free supernatant obtained at the end of the experiments was submitted to extraction, and afterward the biosurfactant was isolated using methanol with a yield of 9 g l−1. The critical micelle concentration of the biosurfactant was found to be 0.25 mg ml−1 with a surface tension of 25 mN m−1. Several concentrations of the biosurfactant (0.625–10 mg ml−1) were used to evaluate its antimicrobial and antiadhesive activities against a variety of microorganisms. The biosurfactant showed antimicrobial activity against Streptococcus oralis (68%), Candida albicans (57%), and Staphylococcus epidermidis(57.6%) for the highest concentration tested. Furthermore, the biosurfactant at a concentration of 10 mg ml−1 inhibited the adhesion between 80 and 92% of Pseudomonas aeruginosa, Streptococcus agalactiae, Streptococcus sanguis12. Inhibition of adhesion with percentages near 100% occurred for the higher concentrations of biosurfactant used. Results gathered in this study point to a potential use of the biosurfactant in biomedical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Adamczak M, Bednarski W (2000) Influence of medium composition and aeration on the synthesis of surfactants produced by Candida Antarctica. Biotechnol Lett 22:313–316

    Article  CAS  Google Scholar 

  2. Ahimou F, Jacques P, Deleu M (2001) Surfactin and iturin A effects on Bacillus subtilis surface hydrophobicity. Enzym Microb Technol 27:749–754

    Article  Google Scholar 

  3. Amaral PFF, Silva JM, Lehocky M, Barros-Timmons AMV, Coelho MAS, Marrucho IM, Coutinho JAP (2006) Production and characterization of a bioemulsifier from Yarrowia lipolytica. Process Biochem 41:1894–1898

    Article  CAS  Google Scholar 

  4. Benincasa M, Abalos A, Oliveira I, Manresa A (2004) Chemical structure, surface properties and biological activities of the biosurfactant produced by Pseudomonas aeruginosa LB1 from soapstock. Antonie Van Leeuwenhoek 85:1–8

    Article  PubMed  CAS  Google Scholar 

  5. Benincasa M (2007) Rhamnolipid produced from agroindustrial wastes enhances hydrocarbon biodegradation in soil. Curr Microbial 56:445–449

    Article  Google Scholar 

  6. Banat IM, Makkar R, Cameotra S (2000) Potential commercial applications of microbial surfactants. Appl Microbiol Biotechnol 53:495–508

    Article  PubMed  CAS  Google Scholar 

  7. Boris S, Barbe′s C (2000) Role played by lactobacilli in controlling the population of vaginal pathogens. Microbes Infect 2:543–546

    Article  PubMed  CAS  Google Scholar 

  8. Busscher HJ, Van Hoogmoed CG, Geertsema-Doornbusch GI, Van Der Kuijl-Booij M, Van Der Mei HC (1997) Streptococcus thermophilus and its biosurfactants inhibit adhesion by Candida spp. On silicone rubber. Appl Environ Microbiol 63:3810–3817

    PubMed  CAS  Google Scholar 

  9. Cameotra S, Makkar R (1998) Synthesis of biosurfactants in extreme conditions. Appl Microbiol Biotechnol 50:520–529

    Article  PubMed  CAS  Google Scholar 

  10. Calvo C, Manzanera M, Silva-Castro GA, González-Lopéz J (2009) Application of bioemulsifiers in soil oil bioremediation processes. Future prospects. Sci Total Environ 407:3634–3640

    Article  PubMed  CAS  Google Scholar 

  11. Carrilo C, Teruel JA, Aranda FJ, Ortiz A (2003) Molecular mechanism of membrane permeabilization by the peptide antibiotic surfactin. Biochim Biophys Acta 1611:91–97

    Article  Google Scholar 

  12. Das P, Mukherjee S, Sen R (2009) Antiadhesive action of a marine microbial surfactant. Colloids Surf B Biointerfaces 71:183–186

    Article  PubMed  CAS  Google Scholar 

  13. Dunne Jr WM (2002) Bacterial adhesion: seen any good biofilms lately. Clin Microbiol Rev 15:155–166

    Article  PubMed  CAS  Google Scholar 

  14. Elving GJ, Van Der Mei HC, Busscher HJ, Van Weissenbruch R, Albers FW (2002) Comparison of the microbial composition of voice prosthesis biofilms from patients requiring frequent versus infrequent replacement. Ann Otol Rihinol Laryngol 111:200–203

    Google Scholar 

  15. Elving GJ, Van Der Mei HC, Busscher HJ, Amerogen EC, Van Weissenbruch R, Albers FW (2000) Antimicrobial activity of synthetic salivary peptides against voice prosthetic microorganisms. Laryngoscope 110:321–324

    Article  PubMed  CAS  Google Scholar 

  16. Falagas MF, Makris GC (2009) Probiotic bacteria and biosurfactants for nosocomial infection control: a hypothesis. J Hosp Infect 71:301–306

    Article  PubMed  CAS  Google Scholar 

  17. Fischer W (1996) Molecular analysis of lipid macroamphiphiles by hydrophobic interaction chromatography. J Microbiol Methods 25:129–144

    Article  CAS  Google Scholar 

  18. Gallert C, Winter J (2002) Solid and liquid residues as raw materials for biotechnology. Zeitschrift fur Naturforschung 89:483–496

    CAS  Google Scholar 

  19. Gudiña EJ, Rocha V, Teixeira JA, Rodrigues LR (2010) Antimicrobial and antiadhesive properties of a biosurfactant isolated from Lactobacillus paracasei ssp. paracasei A20. Appl Microbiol 50:419–424

    Article  Google Scholar 

  20. Gudiña EJ, Teixeira JA, Rodrigues LR (2010) Isolation and functional characterization of a biosurfactant produced by Lactobacillus paracasei. Colloids Surf B Biointerfaces 76:298–304

    Article  PubMed  Google Scholar 

  21. Heinemann C, Hylckama V, Van Johan ET, Janssen DB, Busscher HJ, Van Der Mei HC, Reid G (2000) Purification and characterization of a surface-binding protein from Lactobacillus fermentum RC-14 that inhibits adhesion of Enterococcus faecalis 1131. FEMS Microbiol Lett 90:177–180

    Article  Google Scholar 

  22. Hua Z, Chen J, Lun S, Wang X (2003) Influence of biosurfactants produced by on surface properties of microorganism and biodegradation of n-alkanes. Water Res 37:4143–4150

    Article  PubMed  CAS  Google Scholar 

  23. Kitamoto D, Isoda H, Nakahara T (2002) Functions and potential applications of glycolipid biosurfactants—from energy-saving materials to gene delivery carriers. J Biosci Bioeng 94:187–201

    PubMed  CAS  Google Scholar 

  24. Kuyukina MS, Ivshina IB, Makarov SO, Litvinenko LV, Cunningham CJ, Philip JC (2005) Effect of biosurfactants on crude oil desorption and mobilization in a soil system. Environ Int 31:155–161

    Article  PubMed  CAS  Google Scholar 

  25. Lang S, Katsiwela E, Wagner F (1989) Antimicrobial effects of biosurfactants. Fat Sci Technol 9:363–366

    Google Scholar 

  26. Luna JM, Sarubbo LA, Campos-Takaki GM (2009) A new biosurfactant produced by Candida glabrata UCP1002: characteristics of stability and application in oil recovery. Braz Arch Biol Technol 52:785–793

    Article  Google Scholar 

  27. Luna JM, Rufino RD, Sarubbo LA, Campos-Takaki GM (2008) Produção de biossurfactante em meio de baixo custo formulado com água do mar. Exacta 6:209–215

    Google Scholar 

  28. Maier RM (2003) Biosurfactants: evolution and diversity. Adv Appl Microbiol 52:101–121

    Article  PubMed  CAS  Google Scholar 

  29. Mireles JR, Toguchi A, Harshey RM (2001) Salmonella enterica serovar typhimurium swarming mutants with altered biofilm-forming abilities: surfactin inhibits biofilm formation. J Bacteriol 183:5848–5854

    Article  PubMed  CAS  Google Scholar 

  30. Mukherjee S, Das P, Sen R (2006) Towards commercial production of microbial surfactants. Trends Biotechnol 24:509–515

    Article  PubMed  CAS  Google Scholar 

  31. Muthusamy K, Gopalakrishnan S, Ravi Tk, Sivachidambaram P (2008) Biosurfactants: properties, commercial production and application. Curr Microbiol 94:736–747

    CAS  Google Scholar 

  32. Nitschke M, Ferraz C, Pastore GM (2004) Selection of microorganisms for biosurfactant production using agroindustrial wastes. Braz J Microbiol 35:336–341

    Article  Google Scholar 

  33. Pratt-Terpstra IH, Busscher HJ (1989) Microbial factors in a thermodynamic approach of oral streptococcal adhesion to solid substrata. J Colloid Interface Sci 129:568–574

    Article  Google Scholar 

  34. Rahman KSM, Gakpe E (2008) Production, characterization and applications of biosurfactants—review. Biotechnology 7:360–370

    Article  CAS  Google Scholar 

  35. Rodrigues LR, Teixeira JA, Van Der Mei HC, Oliveira R (2006) Isolation and partial characterization of a biosurfactant produced by Streptococcus thermophilus A. Colloids Surf B Biointerfaces 53:105–112

    Article  PubMed  CAS  Google Scholar 

  36. Rodrigues LR, Teixeira JA, Van Der Mei HC, Oliveira R (2006) Physicochemical and functional characterization of a biosurfactant produced by Lactococcus lactis 53. Colloids Surf B Biointerfaces 49:79–86

    Article  PubMed  CAS  Google Scholar 

  37. Rodrigues LR, Banat IM, Van Der Mei HC, Teixeira JA, Oliveira R (2006) Interference in adhesion of bacteria and yeasts isolated from explanted voice prostheses to silicone rubber by rhamnolipid biosurfactants. J Appl Microbiol 100:470–480

    Article  PubMed  CAS  Google Scholar 

  38. Rodrigues LR, Moldes A, Teixeira JA, Oliveira R (2006) Kinetic study of fermentative biosurfactant production by Lactobacillus strains. Biochem Eng J 28:109–116

    Article  CAS  Google Scholar 

  39. Rodrigues LR, Van Der Mei HC, Teixeira JA, Oliveira R (2004) Biosurfactant from Lactococcus lactis 53 inhibit microbial adhesion on silicone rubber. Appl Microbiol Biotechnol 66:306–311

    Article  PubMed  CAS  Google Scholar 

  40. Rodrigues LR, Van Der Mei HC, Teixeira JA, Oliveira R (2004b) Influence of biosurfactants from probiotic bacteria on formation of biofilms on voice prostheses

  41. Rufino RD (2006) Produção de biossurfactante por Candida lipolytica. Recife (2006) Dissertação (Mestrado em Micologia). Centro de Ciências Biológicas, Universidade Federal de Pernambuco, 95f

  42. Rufino RD, Sarubbo LA, Campos-Takaki GM (2008) Enhancement of stability of biosurfactant produced by Candida lipolytica using industrial residue as substrate. World J Microbiol Biotechnol 23:729–734

    Article  Google Scholar 

  43. Sarubbo LA, Farias CBB, Campos-Takaki GM (2007) Co-utilization of canola oil and glucose on the production of a surfactant by Candida lipolytica. Eletronic J Biotechnol 9:400–406

    Google Scholar 

  44. Sarubbo LA, Luna JM, Campos-Takaki GM (2006) Production and stability studies of the bioemulsifier obtained from a new strain of Candida glabrata UCP1002. Eletronic J Biotechnol 9:400–406

    Google Scholar 

  45. Singh P, Cameotra S (2004) Potential applications of microbial surfactants in biomedical sciences. Trends Biotechnol 22:142–146

    Article  PubMed  CAS  Google Scholar 

  46. Singh A, Van Hamme JD, Ward OP (2007) Surfactants in microbiology and biotechnology: Part 2. Application aspects. Biotechnol Adv 25:99–121

    Article  PubMed  CAS  Google Scholar 

  47. Sobrinho HBS, Rufino RD, Luna JM, Salgueiro AA, Campos-Takaki GM, Leite LFC (2008) Utilization of two agroindustrial by-products for the production of a surfactant by Candida sphaerica UCP0995. Process Biochem 43:912–917

    Article  CAS  Google Scholar 

  48. Velraeds-Martine MC, Vander Mei HC, Reid G, Busscher HJ (1996) Physiochemical and biochemical characterization of biosurfactants released by Lactobacillus strains. Colloids Surf B Biointerfaces 8:51–61

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the funding agencies FACEPE, CNPq, FINEP, PRONEX, and UNICAMP for using their facilities and CAPES for sandwich doctorate scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Galba M. de Campos-Takaki.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Luna, J.M., Rufino, R.D., Sarubbo, L.A. et al. Evaluation Antimicrobial and Antiadhesive Properties of the Biosurfactant Lunasan Produced by Candida sphaerica UCP 0995. Curr Microbiol 62, 1527–1534 (2011). https://doi.org/10.1007/s00284-011-9889-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-011-9889-1

Keywords

Navigation