Skip to main content

Advertisement

Log in

Microarray Analysis of the Chelerythrine-Induced Transcriptome of Mycobacterium tuberculosis

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Chelerythrine (a natural quaternary benzophenanthridine alkaloid) is an extract from the roots of Chelidonium majus with potential antimycobacterial activity. To reveal the possible mechanism of action of chelerythrine against Mycobacterium tuberculosis (M. tuberculosis), commercial oligonucleotide microarrays were used to analyze the genome-wide transcriptional changes triggered by treatment with subinhibitory concentrations of chelerythrine. Quantitative real-time RT-PCR was performed for selected genes to verify the microarray results. We interpreted our microarray data using Agilent software. Analysis of the microarray data revealed that a total of 759 genes were differentially regulated by chelerythrine. Of these, 372 genes were upregulated, and 387 genes were downregulated. Some of the important genes that were significantly regulated are related to different pathways (such as urease), methoxy-mycolic acid synthase, surface-exposed lipids, the heat shock response, and protein synthesis. This genome-wide transcriptomics approach produced the first insights into the response of M. tuberculosis to a chelerythrine challenge.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Cantrell CL, Franzblau SG, Fischer NH (2001) Antimycobacterial plant terpenoids. Planta Med 67(8):685–694

    Article  PubMed  CAS  Google Scholar 

  2. Chmura SJ, Dolan ME, Cha A, Mauceri HJ, Kufe DW, Weichselbaum RR (2000) In vitro and in vivo activity of protein kinase C inhibitor chelerythrine chloride induces tumor cell toxicity and growth delay in vivo. Clin Cancer Res 6(2):737–742

    PubMed  CAS  Google Scholar 

  3. Jarvis WD, Turner AJ, Povirk LF, Traylor RS, Grant S (1994) Induction of apoptotic DNA fragmentation and cell death in HL-60 human promyelocytic leukemia cells by pharmacological inhibitors of protein kinase C. Cancer Res 54(7):1707–1714

    PubMed  CAS  Google Scholar 

  4. Lenfeld J, Kroutil M, Marsálek E, Slavík J, Preininger V, Simánek V (1981) Anti-inflammatory activity of quaternary benzophenanthridine alkaloids from chelidonium majus. Planta Med 43(2):161–165

    Article  PubMed  CAS  Google Scholar 

  5. Betts JC, McLaren A, Lennon MG, Kelly FM, Lukey PT, Blakemore SJ, Duncan K (2003) Signature gene expression profiles discriminate between isoniazid-, thiolactomycin-, and triclosan-treated Mycobacterium tuberculosis. Antimicrob Agents Chemother 47(9):2903–2913

    Article  PubMed  CAS  Google Scholar 

  6. Boshoff HI, Myers TG, Copp BR, McNeil MR, Wilson MA, Barry CE 3rd (2004) The transcriptional responses of Mycobacterium tuberculosis to inhibitors of metabolism: novel insights into drug mechanisms of action. J Biol Chem 279(38):40174–40184

    Article  PubMed  CAS  Google Scholar 

  7. Yu L, Zhang W, Wang L, Yang J, Liu T, Peng J, Leng W, Chen L, Li R, Jin Q (2007) Transcriptional profiles of the response to ketoconazole and amphotericin B in Trichophyton rubrum. Antimicrob Agents Chemother 51(1):144–153

    Article  PubMed  CAS  Google Scholar 

  8. Yu L, Xiang H, Fan J, Wang D, Yang F, Guo N, Jin Q, Deng X (2008) Global transcriptional response of Staphylococcus aureus to rhein, a natural plant product. J Biotechnol 135(3):304–308

    Article  PubMed  CAS  Google Scholar 

  9. Yu L, Guo N, Meng R, Liu B, Tang X, Jin J, Cui Y, Deng X (2010) Allicin-induced global gene expression profile of Saccharomyces cerevisiae. Appl Microbiol Biotechnol 88(1):219–229

    Article  PubMed  CAS  Google Scholar 

  10. Franzblau SG, Witzig RS, McLaughlin JC, Torres P, Madico G, Hernandez A, Degnan MT, Cook MB, Quenzer VK, Ferguson RM, Gilman RH (1998) Rapid low-technology MIC determination with clinical, Mycobacterium tuberculosis isolates by using the microplate Alamar Blue assay. J Clin Microbiol 36(2):362–366

    PubMed  CAS  Google Scholar 

  11. Jiménez-Arellanes A, Meckes M, Ramírez R, Torres J, Luna-Herrera J (2003) Activity against multidrug-resistant Mycobacterium tuberculosis in mexican plants used to treat respiratory diseases. Phytother Res 17(8):903–908

    Article  PubMed  Google Scholar 

  12. Slayden RA, Knudson DL, Belisle JT (2006) Identification of cell cycle regulators in Mycobacterium tuberculosis by inhibition of septum formation and global transcriptional analysis. Microbiology 152(6):1789–1797

    Article  PubMed  CAS  Google Scholar 

  13. Micklinghoff JC, Breitinger KJ, Schmidt M, Geffers R, Eikmanns BJ, Bange FC (2009) Role of the transcriptional regulator RamB (Rv0465c) in the control of the glyoxylate cycle in Mycobacterium tuberculosis. J Bacteriol 191(23):7260–7269

    Article  PubMed  CAS  Google Scholar 

  14. Liu TT, Lee RE, Barker KS, Lee RE, Wei L, Homayouni R, Rogers PD (2005) Genome-wide expression profiling of the response to azole, polyene, echinocandin, and pyrimidine antifungal agents in Candida albicans. Antimicrob Agents Chemother 49:2226–2236

    Article  PubMed  CAS  Google Scholar 

  15. Clemens DL, Lee BY, Horwitz MA (1995) Purification, characterization, and genetic analysis of Mycobacterium tuberculosis urease, a potentially critical determinant of host–pathogen interaction. J Bacteriol 177(19):5644–5652

    PubMed  CAS  Google Scholar 

  16. Kim JK, Mulrooney SB, Hausinger RP (2005) Biosynthesis of active Bacillus subtilis urease in the absence of known urease accessory proteins. J Bacteriol 187(20):7150–7154

    Article  PubMed  CAS  Google Scholar 

  17. Marri PR, Bannantine JP, Golding GB (2006) Comparative genomics of metabolic pathways in Mycobacterium species: gene duplication, gene decay and lateral gene transfer. FEMS Microbiol Rev 30(6):906–925

    Article  PubMed  CAS  Google Scholar 

  18. Phadnis SH, Parlow MH, Levy M, Ilver D, Caulkins CM, Connors JB, Dunn BE (1996) Surface localization of Helicobacter pylori urease and heat shock protein homolog requires bacterial autolysis. Infect Immun 64(3):905–912

    PubMed  CAS  Google Scholar 

  19. Bore E, Langsrud S, Langsrud Ø, Rode TM, Holck A (2007) Acid-shock responses in Staphylococcus aureus investigated by global gene expression analysis. Microbiology 153(Pt 7):2289–2303

    Article  PubMed  CAS  Google Scholar 

  20. Dubnau E, Chan J, Raynaud C, Mohan VP, Lanéelle MA, Yu K, Quémard A, Smith I, Daffé M (2000) Oxygenated mycolic acids are necessary for virulence of Mycobacterium tuberculosis in mice. Mol Microbiol 36(3):630–637

    Article  PubMed  CAS  Google Scholar 

  21. Camacho LR, Raynaud C, Constant P, Laneelle MA, Triccas JA, Gicquel B, Cox JS, Chen B, McNeil M, Jacobs WR Jr (1999) Identification of a virulence gene cluster of Mycobacterium tuberculosis by signature-tagged transposon mutagenesis. Mol Microbiol 34:257–267

    Article  PubMed  CAS  Google Scholar 

  22. Camacho LR, Constant P, Raynaud C, Laneelle MA, Triccas JA, Gicquel B, Daffé M, Guilhot C (2001) Analysis of the phthiocerol dimycocerosate locus of Mycobacterium tuberculosis. evidence that this lipid is involved in the cell wall permeability barrier. J Biol Chem 276(23):19845–19854

    Article  PubMed  CAS  Google Scholar 

  23. Cox JS, Chen B, McNeil M, Jacobs WR Jr (1999) Complex lipid determines tissue-specific replication of Mycobacterium tuberculosis in mice. Nature 402(6757):79–83

    Article  PubMed  CAS  Google Scholar 

  24. Domenech P, Reed MB, Barry CE 3rd (2005) Contribution of the Mycobacterium tuberculosis MmpL protein family to virulence and drug resistance. Infect Immun 73(6):3492–3501

    Article  PubMed  CAS  Google Scholar 

  25. Nikaido H, Vaara M (1985) Molecular basis of bacterial outer membrane permeability. Microbiol Rev 49(1):1–32

    PubMed  CAS  Google Scholar 

  26. Stewart GR, Wernisch L, Stabler R, Mangan JA, Hinds J, Laing KG, Young DB, Butcher PD (2002) Dissection of the heat-shock response in Mycobacterium tuberculosis using mutants and microarrays. Microbiology 148(Pt 10):3129–3138

    PubMed  CAS  Google Scholar 

  27. Cunningham AF, Spreadbury CL (1998) Mycobacterial stationary phase induced by low oxygen tension: cell wall thickening and localization of the 16-kilodalton a-crystallin homolog. J Bacteriol 180(4):801–808

    PubMed  CAS  Google Scholar 

  28. Yuan Y, Crane DD, Barry CE 3rd (1996) Stationary phase-associated protein expression in Mycobacterium tuberculosis: function of the mycobacterial α-crystallinhomolog. J Bacteriol 178(15):4484–4492

    PubMed  CAS  Google Scholar 

  29. Narberhaus F (2002) Alpha-crystallin-type heat shock proteins: socializing minichaperones in the context of a multichaperone network. Microbiol Mol Biol Rev 66(1):64–93

    Article  PubMed  CAS  Google Scholar 

  30. Pang X, Howard ST (2007) Regulation of the α-Crystallin gene acr2 by the MprAB two-component system of Mycobacterium tuberculosis. J Bacteriol 189(17):6213–6221

    Article  PubMed  CAS  Google Scholar 

  31. Stewart GR, Newton SM, Wilkinson KA, Humphreys IR, Murphy HN, Robertson BD, Wilkinson RJ, Young DB (2005) The stress-responsive chaperone α-crystallin 2 is required for pathogenesis of Mycobacterium tuberculosis. Mol Microbiol 55(4):1127–1137

    Article  PubMed  CAS  Google Scholar 

  32. Carter AP, Clemons WM, Brodersen DE, Morgan-Warren RJ, Wimberly BT, Ramakrishnan V (2000) Functional insights from the structure of the 30S ribosomal subunit and its interactions with antibiotics. Nature 407(6802):340–348

    Article  PubMed  CAS  Google Scholar 

  33. Dennis PP (1976) Effects of chloramphenicol on the transcriptional activities of ribosomal RNA and ribosomal protein genes in Escherichia coli. J Mol Biol 108(3):535–546

    Article  PubMed  CAS  Google Scholar 

  34. Timm J, Post FA, Bekker LG, Walther GB, Wainwright HC, Manganelli R, Chan WT, Tsenova L, Gold B, Smith I, Kaplan G, McKinney JD (2003) Differential expression of iron-, carbon-, and oxygen-responsive mycobacterial genes in the lungs of chronically infected mice and tuberculosis patients. Proc Natl Acad Sci USA 100:14321–14326

    Article  PubMed  CAS  Google Scholar 

  35. McKinney JD, Höner zu Bentrup K, Muñoz-Elías EJ, Miczak A, Chen B, Chan WT, Swenson D, Sacchettini JC, Jacobs WR Jr, Russell DG (2000) Persistence of Mycobacterium tuberculosis in macrophages and mice requires the glyoxylate shunt enzyme isocitrate lyase. Nature 406:735–738

    Article  PubMed  CAS  Google Scholar 

  36. Karakousis PC, Yoshimatsu T, Lamichhane G, Woolwine SC, Nuermberger EL, GrossetJ Bishai WR, Bishai J (2004) Dormancy phenotype displayed by extracellular Mycobacterium tuberculosis within artificial granulomas in mice. J Exp Med 200(5):647–657

    Article  PubMed  CAS  Google Scholar 

  37. Fisher MA, Plikaytis BB, Shinnick TM (2002) Microarray analysis of the Mycobacterium tuberculosis transcriptional response to the acidic conditions found in phagosomes. J Bacteriol 184(14):4025–4032

    Article  PubMed  CAS  Google Scholar 

  38. Grassi M, Volpe E, Colizzi V, Mariani F (2006) An improved, real-time PCR assay for the detection of GC-rich and low abundance templates of Mycobacterium tuberculosis. J Microbiol Methods 64(3):406–410

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Important National Science, Technology Specific Projects (2008ZX10301), the Specialized Research Fund for the Doctoral Program of Higher Education (SRFDP) (No. 200801831051), the National Nature Science Foundation of China (No. 30871889), the Fund for Science and Technology Development of the Jilin Province, China (No. 200705233), and the Fundamental Research Funds for the Central Universities.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qi Jin or Lu Yu.

Additional information

Junchao Liang, Fanli Zeng, and Aizhen Guo contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 865 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liang, J., Zeng, F., Guo, A. et al. Microarray Analysis of the Chelerythrine-Induced Transcriptome of Mycobacterium tuberculosis . Curr Microbiol 62, 1200–1208 (2011). https://doi.org/10.1007/s00284-010-9837-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-010-9837-5

Keywords

Navigation