Skip to main content

Advertisement

Log in

Diversity of Burkholderia cepacia Complex from the Moso Bamboo (Phyllostachys edulis) Rhizhosphere Soil

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

The purpose of this study was to determine the existence of Burkholderia cepacia complex (Bcc) at species level and the predominant species in the environment of moso bamboo plantations in Hangzhou, China. A total of 423 isolates were recovered from moso bamboo rhizhosphere soil samples of three sites on the selective medium during 2007–2008. Isolates were identified by Bcc-specific PCR assays, followed by recA-restriction fragment length polymorphism assays, species-specific PCR analysis, recA gene sequencing, multilocus sequence typing (MLST) scheme, and BOX-PCR fingerprinting for genomic diversity. Out of 423 isolates, 278 isolates were assigned to the following Bcc species, eight B. stabilis, 26 B. anthina, 193 B. pyrrocinia, and 51 B. arboris, which indicated B. pyrrocinia as the most dominant species followed by B. arboris. Moreover, false positives were observed in certain isolates of B. arboris while performing species-specific PCR test. Furthermore, the results of recA gene sequence similarity and MLST data demonstrated that nine isolates formed a single discrete cluster but were PCR negative to species-specific primers representing novel species may exist within the Bcc. In addition, BOX-PCR fingerprinting for all the Bcc isolates also showed the strain diversity. It is the first report of the existence of B. arboris and predominance of B. pyrrocinia in the moso bamboo environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Coenye T, Vandamme P, Govan JR, LiPuma JJ (2001) Taxonomy and identification of the Burkholderia cepacia complex. J Clin Microbiol 39:3427–3436

    Article  CAS  PubMed  Google Scholar 

  2. Coenye T, Vandamme P (2003) Diversity and significance of Burkholderia species occupying diverse ecological niches. Environ Microbiol 5:719–729

    Article  CAS  PubMed  Google Scholar 

  3. Vandamme P, Holmes B, Vancanneyt M, Coenye T, Hoste B, Coopman R, Revets H, Lauwers S, Gillis M, Kersters K, Govan JR (1997) Occurrence of multiple genomovars of Burkholderia cepacia in cystic fibrosis patients and proposal of Burkholderia multivorans sp nov. Int J Syst Bacteriol 47:1188–1200

    Article  CAS  PubMed  Google Scholar 

  4. Vandamme P, Holmes B, Coenye T, Goris J, Mahenthiralingam E, LiPuma JJ, Govan JR (2003) Burkholderia cenocepacia sp. nov.—a new twist to an old story. Res Microbiol 154:91–96

    Article  PubMed  Google Scholar 

  5. Vandamme P, Mahenthiralingam E, Holmes B, Coenye T, Hoste B, De Vos P, Henry D, Speert DP (2000) Identification and population structure of Burkholderia stabilis sp nov. (formerly Burkholderia cepacia genomovar IV). J Clin Microbiol 38:1042–1047

    CAS  PubMed  Google Scholar 

  6. Gillis M, Van Van T, Bardin R, Goor M, Hebbar P, Willems A, Segers P, Kersters K, Heulin T, Fernandez MP (1995) Polyphasic taxonomy in the genus Burkholderia leading to an emended description of the genus and proposition of Burkholderia vietnamiensis sp. nov. for N2-fixing isolates from rice in Vietnam. Int J Syst Bacteriol 45:274–289

    Article  CAS  Google Scholar 

  7. Vermis K, Coenye T, LiPuma JJ, Mahenthiralingam E, Nelis HJ, Vandamme P (2004) Proposal to accommodate Burkholderia cepacia genomovar VI as Burkholderia dolosa sp nov. Int J Syst Evol Microbiol 54:689–691

    Article  CAS  PubMed  Google Scholar 

  8. Coenye T, Mahenthiralingam E, Henry D, LiPuma JJ, Laevens S, Gillis M, Speert DP, Vandamme P (2001) Burkholderia ambifaria sp nov., a novel member of the Burkholderia cepacia complex including biocontrol and cystic fibrosis-related isolates. Int J Syst Evol Microbiol 51:1481–1490

    CAS  PubMed  Google Scholar 

  9. Vandamme P, Henry D, Coenye T, Nzula S, Vancanneyt M, LiPuma JJ, Speert DP, Govan JR, Mahenthiralingam E (2002) Burkholderia anthina sp nov. and Burkholderia pyrrocinia: two additional Burkholderia cepacia complex bacteria, may confound results of new molecular diagnostic tools. FEMS Immunol Med Microbiol 33:143–149

    Article  CAS  PubMed  Google Scholar 

  10. Vanlaere E, Lipuma JJ, Baldwin A, Henry D, De Brandt E, Mahenthiralingam E, Speert D, Dowson C, Vandamme P (2008) Burkholderia latens sp nov., Burkholderia diffusa sp. nov., Burkholderia arboris sp. nov., Burkholderia seminalis sp. nov., and Burkholderia metallica sp. nov., novel species within the Burkholderia cepacia complex. Int J Syst Evol Microbiol 58:1580–1590

    Article  CAS  PubMed  Google Scholar 

  11. Vanlaere E, Baldwin A, Gevers D, Henry D, De Brandt E, LiPuma JJ, Mahenthiralingam E, Speert DP, Dowson C, Vandamme P (2009) Taxon K, a complex within the Burkholderia cepacia complex, comprises at least two novel species, Burkholderia contaminans sp nov. and Burkholderia lata sp. nov. Int J Syst Evol Microbiol 59:102–111

    Article  CAS  PubMed  Google Scholar 

  12. Fiore A, Laevens S, Bevivino A, Dalmastri C, Tabacchioni S, Vandamme P, Chiarini L (2001) Burkholderia cepacia complex: distribution of genomovars among isolates from the maize rhizosphere in Italy. Environ Microbiol 3:137–143

    Article  CAS  PubMed  Google Scholar 

  13. Miller SC, LiPuma JJ, Parke JL (2002) Culture-Based and non-growth-dependent detection of the Burkholderia cepacia complex in soil environments. Appl Environ Mircobiol 68:3750–3758

    Article  CAS  Google Scholar 

  14. Vermis K, Brachkova M, Vandamme P, Nelis H (2003) Isolation of Burkholderia cepacia complex genomovars from waters. Syst Appl Microbiol 26:595–600

    Article  CAS  PubMed  Google Scholar 

  15. Chiarini L, Bevivino A, Dalmastri C, Tabacchioni S, Visca P (2006) Burkholderia cepacia complex species: health hazards and biotechnological potential. Trends Microbiol 14:277–286

    Article  CAS  PubMed  Google Scholar 

  16. Govan JR, Deretic V (1996) Microbial pathogenesis in cystic fibrosis: mucoid Pseudomonas aeruginosa and Burkholderia cepacia. Microbiol Rev 60:539–574

    CAS  PubMed  Google Scholar 

  17. Govan JRW, Balandreau J, Vandamme P (2000) Burkholderia cepacia—friend and foe. Am Soc Microbiol News 66:124–125

    Google Scholar 

  18. LiPuma JJ, Spilker T, Coenye T, Gonzalez CF (2002) An epidemic Burkholderia cepacia complex strain identified in soil. Lancet 359:2002–2003

    Article  PubMed  Google Scholar 

  19. Parke JL, Gurian-Sherman D (2001) Diversity of the Burkholderia cepacia complex and implications for risk assessment of biological control strains. Annu Rev Phytopathol 39:225–258

    Article  CAS  PubMed  Google Scholar 

  20. Mahenthiralingam E, Baldwin A, Dowson CG (2008) Burkholderia cepacia complex bacteria: opportunistic pathogens with important natural biology. J Appl Microbiol 104:1539–1551

    Article  CAS  PubMed  Google Scholar 

  21. Gui Y, Wang S, Quan L, Zhou C, Long S, Zheng H, Jin L, Zhang X, Ma N, Fan L (2007) Genome size and sequence composition of moso bamboo: a comparative study. Sci China C Life Sci 50:700–705

    Article  CAS  PubMed  Google Scholar 

  22. Han J, Xia D, Li L, Sun L, Yang K, Zhang L (2009) Diversity of culturable bacteria isolated from root domains of moso bamboo (Phyllostachys edulis). Microb Ecol 58:363–373

    Article  PubMed  Google Scholar 

  23. Yabuuchi E, Kosako Y, Oyaizu H, Yano I, Hotta H, Hashimoto Y, Ezaki T, Arakawa M (1992) Proposal of Burkholderia gen. nov., transfer of seven species of the genus Pseudomonas homology group to the new genus, with the type species Burkholderia cepacia (Palleroni, Holmes 1981) comb nov. Microbiol Immunol 36:1251–1275

    CAS  PubMed  Google Scholar 

  24. Burbage DA, Sasser M (1982) A medium selective for Pseudomonas cepacia. Phytopathology 76:706

    Google Scholar 

  25. Hagedorn C, Gould WD, Bardinelli TR, Gustavson DR (1987) A selective medium for enumeration and recovery of Pseudomonas cepacia biotypes from soil. Appl Environ Microbiol 53:2265–2268

    CAS  PubMed  Google Scholar 

  26. Dalmastri C, Pirone L, Tabacchioni S, Bevivino A, Chiarini L (2005) Efficacy of species-specific recA PCR tests in the identification of Burkholderia cepacia complex environmental isolates. FEMS Microbiol Lett 246:39–45

    Article  CAS  PubMed  Google Scholar 

  27. Mahenthiralingam E, Bischof J, Byrne SK, Radomski C, Davies JE, Av-Gay Y, Vandamme P (2000) DNA-based diagnostic approaches for identification of Burkholderia cepacia complex, Burkholderia vietnamiensis, Burkholderia multivorans, Burkholderia stabilis, Burkholderia cepacia genomovars I and III. J Clin Microbiol 38:3165–3173

    CAS  PubMed  Google Scholar 

  28. McDowell A, Mahenthiralingam E, Moore JE, Dunbar KE, Webb AK, Dodd ME, Martin SL, Millar BC, Scott CJ, Crowe M, Elborn JS (2001) PCR-Based detection and identification of Burkholderia cepacia complex pathogens in sputum from cystic fibrosis patients. J Clin Microbiol 39:4247–4255

    Article  CAS  PubMed  Google Scholar 

  29. Vermis K, Coenye T, Mahenthiralingam E, Nelis HJ, Vandamme P (2002) Evaluation of species-specific recA based PCR tests for genomovar level identification within the Burkholderia cepacia complex. J Med Microbiol 51:937–940

    CAS  PubMed  Google Scholar 

  30. Petrucca A, Cipriani P, Valenti P, Santapaola D, Cimmino C, Scoarughi GL, Santino I, Stefani S, Sessa R, Nicoletti M (2003) Molecular characterization of Burkholderia cepacia isolates from cystic fibrosis (CF) patients in an Italian CF center. Res Microbiol 154:491–498

    Article  CAS  PubMed  Google Scholar 

  31. Seo ST, Tsuchiya K (2004) PCR-based identification and characterization of Burkholderia cepacia complex bacteria from clinical and environmental sources. Lett Appl Microbiol 39:413–419

    Article  CAS  PubMed  Google Scholar 

  32. Pirone L, Chiarini L, Dalmastri C, Bevivino A, Tabacchioni S (2005) Detection of cultured and uncultured Burkholderia cepacia complex bacteria naturally occurring in the maize rhizosphere. Environ Microbiol 7:1734–1742

    Article  CAS  PubMed  Google Scholar 

  33. Baldwin A, Mahenthiralingam E, Thickett KM, Honeybourne D, Maiden MC, Govan JR, Speert DP, Lipuma JJ, Vandamme P, Dowson CG (2005) Multilocus sequence typing scheme that provides both species and strain differentiation for the Burkholderia cepacia complex. J Clin Microbiol 43:4665–4673

    Article  CAS  PubMed  Google Scholar 

  34. Seo ST, Tsuchiya K (2005) Genotypic characterization of Burkholderia cenocepacia strains by rep-PCR and PCR-RFLP of the fliC gene. FEMS Microbiol Lett 245:19–24

    Article  CAS  PubMed  Google Scholar 

  35. Rohlf FJ (2000) NTSYS–pc, Numerical taxonomy and multivariate analysis system, version 2.1. Setauket, New York

    Google Scholar 

  36. Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chain-terminating inhibitors. Biotechnology 24:104–108

    Google Scholar 

  37. Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTALW: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  CAS  PubMed  Google Scholar 

  38. Zhang L, Xie G (2007) Diversity and distribution of Burkholderia cepacia complex in the rhizosphere of rice and maize. FEMS Microbiol Lett 266:231–235

    Article  CAS  PubMed  Google Scholar 

  39. Cesarini S, Bevivino A, Tabacchioni S, Chiarini L, Dalmastri C (2009) RecA gene sequence and multilocus sequence typing for species-level resolution of Burkholderia cepacia complex isolates. Lett Appl Microbiol 49:580–588

    Article  CAS  PubMed  Google Scholar 

  40. Brisse S, Cordevant C, Vandamme P, Bidet P, Loukil C, Chabanon G, Lange M, Bingen E (2004) Species distribution and ribotype diversity of Burkholderia cepacia complex isolates from French patients with cystic fibrosis. J Clin Microbiol 42:4824–4827

    Article  CAS  PubMed  Google Scholar 

  41. Reik R, Spilker T, Lipuma JJ (2005) Distribution of Burkholderia cepacia complex species among isolates recovered from persons with or without cystic fibrosis. J Clin Microbiol 43:2926–2928

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by the National Natural Science Foundation of China (30871655), Agri. Ministry of China (nyhyzx072056), and 863 project (2006AA10211). We thank Qiangqiang Zheng at Huada Genomic Biotechnology, Co., Ltd. (Hangzhou) for skillful technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guanlin Xie.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 107 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lou, M., Fang, Y., Zhang, G. et al. Diversity of Burkholderia cepacia Complex from the Moso Bamboo (Phyllostachys edulis) Rhizhosphere Soil. Curr Microbiol 62, 650–658 (2011). https://doi.org/10.1007/s00284-010-9758-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-010-9758-3

Keywords

Navigation