Skip to main content
Log in

Wolbachia Strains Typing in Different Geographic Population Spider, Hylyphantes Graminicola (Linyphiidae)

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

The Wolbachia endosymbiont of spiders has not been extensively examined. In order to investigate the distribution, evolutionary history, and reproductive phenotype of Wolbachia in spiders in China, we tested 11 geographic populations of Hylyphantes graminicola. Wolbachia infection has been detected in each population. 10 Wolbachia strains have been characterized by multilocus sequence typing (MLST). Phylogenetic analyses indicated that eight Wolbachia strains in H. graminicola belonged to supergroup B, and two belonged to supergroup A. No correlation existed between Wolbachia diversity and host’s geographic distance. The significant correlation was observed between pairwise distance of H. graminicola COI and genetic divergence of associated Wolbachia strains. We also found that Wolbachia infection frequencies in hosts varied over geographic space.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Ahrens ME, Shoemaker D (2005) Evolutionary history of Wolbachia infections in the fire ant Solenopsis invicta. BMC Evol Biol 5:35

    Article  PubMed  Google Scholar 

  2. Baldo L, Werren JH (2007) Revisiting Wolbachia supergroup typing based on WSP: spurious lineages and discordance with MLST. Curr Microbiol 55:81–87

    Article  CAS  PubMed  Google Scholar 

  3. Baldo L, Dunning Hotopp JC, Jolley KA et al (2006) Multilocus sequence typing system for the endosymbiont Wolbachia pipientis. Appl Environ Microbiol 72:7098–7110

    Article  CAS  PubMed  Google Scholar 

  4. Baldo L, Ayoub NA, Hayashi CY et al (2008) Insight into the routes of Wolbachia invasion: high levels of horizontal transfer in the spider genus Agelenopsis revealed by Wolbachia strain and mitochondrial DNA diversity. Mol Ecol 17:557–569

    Article  CAS  PubMed  Google Scholar 

  5. Braig HR, Zhou W, Dobson S, O’Neill SL (1998) Cloning and characterization of a gene encoding the major surface protein of the bacterial endosymbiont Wolbachia pipientis. J Bacteriol 180:2373–2378

    CAS  PubMed  Google Scholar 

  6. Breeuwer JA, Werren JH (1990) Microorganisms associated with chromosome destruction and reproductive isolation between two insect species. Nature 346:558–560

    Article  CAS  PubMed  Google Scholar 

  7. Cordaux R, Michel-Salzat A, Bouchon D (2001) Wolbachia infection in crustaceans: novel hosts and potential routes for horizontal transmission. J Evol Biol 14:237–243

    Article  CAS  Google Scholar 

  8. Excoffier L, Laval G, Schneider S (2005) ARLEQUIN ver. 3.0: an integrated software package for population genetics data analysis. Evolutionary Bioinformatics Online 1:47–50

    CAS  PubMed  Google Scholar 

  9. Goodacre SL, Martin OY, Thomas CFG et al (2006) Wolbachia and other endosymbiont infections in spiders. Mol Ecol 15:517–527

    Article  CAS  PubMed  Google Scholar 

  10. Hoerauf A, Specht S, Marfo-Debrekyei Y et al (2009) Efficacy of 5-week doxycycline treatment on adult Onchocerca volvulus. Parasitol Res 104:437–447

    Article  PubMed  Google Scholar 

  11. Hoffmann AA, Turelli M, Simmons GM (1986) Unidirectional incompatibility between populations of Drosophila simulans. Evolution 40:692–701

    Article  Google Scholar 

  12. Hoffmann AA, Turelli M, Harshman LG (1990) Factors affecting the distribution of cytoplasmic incompatibility in Drosophila simulans. Genetics 126:933–948

    CAS  PubMed  Google Scholar 

  13. Hoffmann AA, Clancy DJ, Merton E (1994) Cytoplasmic incompatibility in Australian populations of Drosophila melanogaster. Genetics 1994(136):993–999

    Google Scholar 

  14. Hurst GD, Bandi C, Sacchi L et al (1999) Adonia variegata (Coleoptera: Coccinellidae) bears maternally inherited flavobacteria that kill males only. Parasitology 118:125–134

    Article  PubMed  Google Scholar 

  15. Jia FX, Yang MS, Yang WJ et al (2009) Influence of continuous high temperature conditions on Wolbachia infection frequency and the fitness of Liposcelis tricolor (Psocoptera: Liposcelididae). Environ Entomol 38:1365–1372

    Article  PubMed  Google Scholar 

  16. Jiggins FM, Bentley JK, Majerus ME et al (2002) Recent changes in phenotype and patterns of host specialization in Wolbachia bacteria. Mol Ecol 11:1275–1283

    Article  PubMed  Google Scholar 

  17. Kocher TD, Thomas WK, Meyer A et al (1989) Dynamics of mitochondrial DNA evolution in animals: amplification and sequencing with conserved primers. Proc Natl Acad Sci USA 86:6196–6200

    Article  CAS  PubMed  Google Scholar 

  18. Kumar S, Tamura K, Nei M (2004) MEGA3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform 5:150–163

    Article  CAS  PubMed  Google Scholar 

  19. Kumm S, Moritz G (2008) First detection of Wolbachia in arrhenotokous populations of thrips species (Thysanoptera: Thripidae and Phlaeothripidae) and its role in reproduction. Environ Entomol 37:1422–1428

    Article  PubMed  Google Scholar 

  20. Martin D, Williamson C, Posada D (2005) RDP2: recombination detection and analysis from sequence alignments. Bioinformatics 21:260–262

    Article  CAS  PubMed  Google Scholar 

  21. Michel-Salzat A, Cordaux R, Bouchon D (2001) Wolbachia diversity in the Porcellionides pruinosus complex of species (Crustacea: Oniscidea): evidence for host-dependent patterns of infection. Heredity 87:428–434

    Article  CAS  PubMed  Google Scholar 

  22. Narita S, Nomura M, Kato Y et al (2006) Genetic structure of sibling butterfly species affected by Wolbachia infection sweep: evolutionary and biogeographical implications. Mol Ecol 15:1095–1108

    Article  CAS  PubMed  Google Scholar 

  23. Nylander JAA (2002) MrModeltest 2.2. Evolutionary Biology Centre, Uppsala University, Uppsala

  24. O’Neill SL, Karr TL (1990) Bidirectional cytoplasmic incompatibility between conspecific populations of Drosophila simulans. Nature 348:178–180

    Article  PubMed  Google Scholar 

  25. O’Neill SL, Giordano R, Colbert AM et al (1992) 16S rRNA phylogenetic analysis of the bacterial endosymbionts associated with cytoplasmic incompatibility in insects. Proc Natl Acad Sci USA 89:2699–2702

    Article  PubMed  Google Scholar 

  26. Oh HW, Kim MG, Shin SW et al (2000) Ultrastructural and molecular identification of a Wolbachia endosymbiont in a spider, Nephila clavata. Insect Mol Biol 9:539–543

    Article  CAS  PubMed  Google Scholar 

  27. Parvizi P, Benlarbi M, Ready PD (2003) Mitochondrial and Wolbachia markers for the sandfly Phlebotomus papatasi: little population differentiation between peridomestic sites and gerbil burrows in Isfahan province, Iran. Med Vet Entomol 17:351–362

    Article  CAS  PubMed  Google Scholar 

  28. Raychoudhury R, Baldo L, Oliveira DC et al (2009) Modes of acquisition of Wolbachia: horizontal transfer, hybrid introgression, and codivergence in the Nasonia species complex. Evolution 63:165–183

    Article  CAS  PubMed  Google Scholar 

  29. Ronquist F, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574

    Article  CAS  PubMed  Google Scholar 

  30. Rowley SM, Raven RJ, McGraw EA (2004) Wolbachia pipientis in Australian spiders. Curr Microbiol 49:208–214

    Article  CAS  PubMed  Google Scholar 

  31. Russell JA, Goldman-Huertas B, Moreau CS et al (2009) Specialization and geographic isolation among Wolbachia symbionts from ants and lycaenid butterflies. Evolution 63:624–640

    Article  CAS  PubMed  Google Scholar 

  32. Schilthuizen M, Stouthamer R (1997) Horizontal transmission of parthenogenesis-inducing microbes in Trichogramma wasps. Proc R Soc Lond B 264:361–366

    Article  CAS  Google Scholar 

  33. Stouthamer R, Breeuwert JA, Luck RF et al (1993) Molecular identification of microorganisms associated with parthenogenesis. Nature 361:66–68

    Article  CAS  PubMed  Google Scholar 

  34. Van Opijnen T, Breeuwer JA (1999) High temperatures eliminate Wolbachia, a cytoplasmic incompatibility inducing endosymbiont, from the two-spotted spider mite. Exp Appl Acarol 23:871–881

    Article  PubMed  Google Scholar 

  35. Werren JH (1997) Biology of Wolbachia. Annu Rev Entomol 42:587–609

    Article  CAS  PubMed  Google Scholar 

  36. Werren JH, Windsor D, Guo L (1995) Distribution of Wolbachia among neotropical arthropods. Proc R Soc Lond B 262:197–204

    Article  Google Scholar 

  37. West SA, Cook M, Werren JH et al (1998) Wolbachia in two insect host-parasitoid communities. Mol Ecol 7:1457–1465

    Article  CAS  PubMed  Google Scholar 

  38. Yen JH, Barr AR (1971) The etiological agent of cytoplasmic incompatibility in Culex pipiens. J Invertebr Pathol 22:242–250

    Article  Google Scholar 

  39. Zwickl DJ (2006) Genetic algorithm approaches for the phylogenetic analysis of large biological sequence datasets under the maximum likelihood criterion. PhD Thesis, University of Texas, Austin

Download references

Acknowledgments

We are grateful to the anonymous reviewers for their thoughtful comments on the manuscript. We also thank Dr. Liu Jie and Yu Hao for identifying spider samples. This study was supported by the National Natural Science Foundation of China (No: 30870284).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chaoliang Lei or Yu Peng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yun, Y., Lei, C., Peng, Y. et al. Wolbachia Strains Typing in Different Geographic Population Spider, Hylyphantes Graminicola (Linyphiidae). Curr Microbiol 62, 139–145 (2011). https://doi.org/10.1007/s00284-010-9686-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-010-9686-2

Keywords

Navigation