Skip to main content
Log in

Diversity of the Formyltetrahydrofolate Synthetase (FTHFS) Gene in the Proximal and Mid Ostrich Colon

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

We analysed fragments of the formyltetrahydrofolate synthetase (FTHFS) gene, which encodes a key enzyme in reductive acetogenesis, from the bacterial flora in the proximal (PC) and mid (MC) colon of three ostriches to assess and compare bacterial diversity in this organ. Two clone libraries of FTHFS fragments were constructed from DNA extracted from digesta of the PC and MC, and a total of 46 cloned sequences were analysed from each library. A wide variety of FTHFS sequences were recovered. The coverage of the PC and MC libraries was 90.0% and 83.3%, respectively. Shannon–Wiener index (H’) and Chao1 of the MC library were higher than those of PC library. The sequences from each library were classified into 15 operational taxonomic units (OTUs) and clusters. Only four OTUs in cluster I were distantly related to known acetogens from human feces and rumen, suggesting the presence of the novel acetogens. Phylogenetic analysis suggests that composition of FTHFS sequences differs for the PC and MC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Altschul SF, Madden TL, Schäffer AA et al (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  CAS  PubMed  Google Scholar 

  2. De Graeve KG, Grivet JP, Durand M et al (1994) Competition between reductive acetogenesis and methanogenesis in the pig large-intestinal flora. J Appl Bacteriol 76:55–61

    PubMed  Google Scholar 

  3. Fievez V, Mbanzamihigo L, Piatton F et al (2001) Evidence for reductive acetogenesis and its nutritional significance in ostrich hindgut as estimated from in vitro incubactions. J Anim Physiol A Anim Nutr 85:271–280

    Article  CAS  Google Scholar 

  4. Fukatsu T (1999) Acetone preservation: a practical technique for molecular analysis. Mol Ecol 8:1935–1945

    Article  CAS  PubMed  Google Scholar 

  5. Hattori K, Matsui H (2008) Diversity of fumarate reducing bacteria in the bovine rumen revealed by culture dependent and independent approaches. Anaerobe 14:87–93

    Article  CAS  PubMed  Google Scholar 

  6. Hayashi H, Shibata K, Bakir MA et al (2007) Bacteroides coprophilus sp. nov., isolated from human faeces. Int J Syst Evol Microbiol 57:1323–1326

    Article  CAS  PubMed  Google Scholar 

  7. Juottonen H, Galand PE, Yrjälä K (2006) Detection of methanogenic Archaea in peat: comparison of PCR primers targeting the mcrA gene. Res Microbiol 157:914–921

    Article  CAS  PubMed  Google Scholar 

  8. Kitahara M, Sakamoto M, Ike M et al (2005) Bacteroides plebeius sp. nov. and Bacteroides coprocola sp. nov., isolated from human faeces. Int J Syst Evol Microbiol 55:2143–2147

    Article  CAS  PubMed  Google Scholar 

  9. Larkin MA, Blackshields G, Brown NP et al (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23:2947–2948

    Article  CAS  PubMed  Google Scholar 

  10. Leaphart AB, Lovell CR (2001) Recovery and analysis of formyltetrahydro-folate synthetase gene sequences from natural populations of acetogenic bacteria. Appl Environ Microbiol 67:1392–1395

    Article  CAS  PubMed  Google Scholar 

  11. Liu C, Finegold SM, Song Y et al (2008) Reclassification of Clostridium coccoides, Ruminococcus hansenii, Ruminococcus hydrogenotrophicus, Ruminococcus luti, Ruminococcus productus and Ruminococcus schinkii as Blautia coccoides gen. nov., comb. nov., Blautia hansenii comb. nov., Blautia hydrogenotrophica comb. nov., Blautia luti comb. nov., Blautia producta comb. nov., Blautia schinkii comb. nov. and description of Blautia wexlerae sp. nov., isolated from human faeces. Int J Syst Evol Microbiol 58:1896–1902

    Article  CAS  PubMed  Google Scholar 

  12. Ljungdahl LG (1986) The autotrophic pathway of acetate synthesis in acetogenic bacteria. Annu Rev Microbiol 40:415–450

    Article  CAS  PubMed  Google Scholar 

  13. Matsui H, Kojima N, Tajima K (2008) Diversity of formyltetrahydrofolate synthetase gene (fhs), a key enzyme for reductive acetogenesis, in the bovine rumen. Biosci Biotechnol Biochem 72:3273–3276

    Article  CAS  PubMed  Google Scholar 

  14. Matsui H, Kato Y, Chikaraishi T, Moritani M, Ban-Tokuda T, Wakita M (2010) Microbial diversity in ostrich ceca as revealed by 16S ribosomal RNA gene clone library and detection of novel Fibrobacter species. Anaerobe 16:83–93

    Article  CAS  PubMed  Google Scholar 

  15. Ohashi Y, Igarashi T, Kumazawa F et al (2007) Analysis of acetogenic bacteria in human feces with formyltetrahydrofolate synthetase sequences. Biosci Microflora 26:37–40

    CAS  Google Scholar 

  16. Ohashi Y, Andou A, Kanaya M et al (2009) Acetogenic bacteria mainly contribute to the disposal of hydrogen in the colon of healthy Japanese. Biosci Microflora 28:17–19

    CAS  Google Scholar 

  17. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  PubMed  Google Scholar 

  18. Schloss PD, Handelsman J (2005) Introducing DOTUR, a computer program for defining operational taxonomic units and estimating species richness. Appl Environ Microbiol 71:1501–1506

    Article  CAS  PubMed  Google Scholar 

  19. Song YL, Liu CX, McTeague M et al (2004) Clostridium bartlettii sp. nov., isolated from human faeces. Anaerobe 10:179–184

    Article  CAS  PubMed  Google Scholar 

  20. Swart D, Mackie RI, Hayes JP (1993) Fermentative digestion in the ostrich (Struthio camelus var. domesticus), a large avian species that utilizes cellulose. S Afr J Anim Sci 23:127–135

    Google Scholar 

  21. Wolin MJ, Miller TL (1983) Interactions of microbial populations in cellulose fermentation. Fed Proc 42:109–113

    CAS  PubMed  Google Scholar 

  22. Wolin MJ, Miller TL, Collins MD et al (2003) Formate-dependent growth and homoacetogenic fermentation by a bacterium from human feces: description of Bryantella formatexigens gen. no., sp.nov. Appl Environ Microbiol 69:6321–6326

    Article  CAS  PubMed  Google Scholar 

  23. Wang RF, Cao WW, Cerniglia CE (1996) PCR detection and quantification of predominant anaerobic bacteria in human and animal fecal samples. Appl Environ Microbiol 62:1242–1247

    CAS  PubMed  Google Scholar 

  24. Xu J, Bjursell MK, Himrod J et al (2003) A genomic view of the human Bacteroides thetaiotaomicron symbiosis. Science 299:2074–2076

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Professor Kazunari Ushida and his colleagues (Kyoto Prefectural University, Kyoto, Japan) for their instruction on DNA extraction. Funding for this study was provided by a Grant-in-Aid for Scientific Research, Japan Society for the Promotion of Science (17380157). Nucleotide sequencing was carried out at Life Science Research Center (Center for Molecular Biology and Genetics), Mie University (Tsu, Japan).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroki Matsui.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Matsui, H., Yoneda, S., Ban-Tokuda, T. et al. Diversity of the Formyltetrahydrofolate Synthetase (FTHFS) Gene in the Proximal and Mid Ostrich Colon. Curr Microbiol 62, 1–6 (2011). https://doi.org/10.1007/s00284-010-9661-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-010-9661-y

Keywords

Navigation