Skip to main content
Log in

Expression of Vitreoscilla Hemoglobin Enhances Cell Growth and Dihydroxyacetone Production in Gluconobacter oxydans

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Dihydroxyacetone (DHA) is an important ketose sugar, which is extensively used in the cosmetic, chemical, and pharmaceutical industries. DHA has been industrially produced by Gluconobacter oxydans with a high demand of oxygen. To improve the production of DHA, the gene vgb encoding Vitreoscilla hemoglobin (VHb) was successfully introduced into G. oxydans, where it was stably maintained, and expressed at about 76.0 nmol/g dry cell weight. Results indicated that the constitutively expressed VHb improved cell growth and DHA production in G. oxydans under different aeration conditions. Especially at low aeration rates, the VHb-expressing strain (VHb+) displayed 23.13% more biomass and 37.36% more DHA production than those of VHb-free strain (VHb) after 32 h fermentation in bioreactors. In addition, oxygen uptake rate (OUR) was also increased in VHb+ strain relative to the control strain during fermentation processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Adlercreutz P, Mattiasson B (1982) Oxygen supply to immobilized cells: oxygen supply by hemoglobin or emulsions of perfluorochemicals. Eur J Appl Microbiol Biotechnol 16:165–170

    Article  CAS  Google Scholar 

  2. Adlercreutz P, Mattiasson B (1984) Oxygen supply to immobilized cells: use of p-benzoquinone as an oxygen substitute. Appl Microbiol Biotechnol 20:296–302

    Article  CAS  Google Scholar 

  3. Bhave SL, Chattoo BB (2003) Expression of Vitreoscilla hemoglobin improves growth and levels of extracellular enzyme in Yarrowia lipolytica. Biotechnol Bioeng 84:658–666

    Article  CAS  PubMed  Google Scholar 

  4. Claret C, Salmon JM, Romieu C, Bories A (1994) Physiology of Gluconobacter oxydans during dihydroxyacetone production from glycerol. Appl Microbiol Biotechnol 41:359–365

    Article  CAS  Google Scholar 

  5. Dikshit KL, Webster DA (1988) Cloning, characterization and expression of the bacteria globin gene from Vitreoscilla in Escherichia coli. Gene 70:377–386

    Article  CAS  PubMed  Google Scholar 

  6. Gupta A, Singh VK, Qazi GN, Kumar A (2001) Gluconobacter oxydans: its biotechnological applications. J Mol Microbiol Biotechnol 3:445–456

    CAS  PubMed  Google Scholar 

  7. Hekmat D, Bauer R, Fricke J (2003) Optimization of the microbial synthesis of dihydroxyacetone from glycerol with Gluconobacter oxydans. Bioprocess Biosyst Eng 26:109–116

    Article  CAS  PubMed  Google Scholar 

  8. Hoist O, Lundbäck H, Mateiasson B (1985) Hydrogen peroxide as an oxygen source for immobilized Gluconobacter oxydans converting glycerol to dihydroxyacetone. Appl Microbiol Biotechnol 22:383–388

    Google Scholar 

  9. Kallio PT, Kim DJ, Tsai PS, Baily JE (1994) Intracellular expression of Vitreoscilla hemoglobin alters Escherichia coli energy metabolism under oxygen-limited conditions. Eur J Biochem 219:201–208

    Article  CAS  PubMed  Google Scholar 

  10. Khosla C, Bailey JE (1989) Characterization of the oxygen-dependent promoter of the Vitreoscilla hemoglobin gene in Escherichia coli. J Bacteriol 171:5995–6004

    CAS  PubMed  Google Scholar 

  11. Khosla C, Curtis JE, Bydalek P, Swartz JR, Bailey JE (1990) Expression of recombinant proteins in Escherichia coli using an oxygen-responsive promoter. Nat Biotechnol 8:554–558

    Article  CAS  Google Scholar 

  12. Kovach ME, Elzer PH, Hill DS, Robertson GT, Farris MA, Roop RM II, Peterson KM (1995) Four new derivatives of the broad-host-range cloning vector pBBR1MCS carrying different antibiotic resistance cassettes. Gene 166:175–176

    Article  CAS  PubMed  Google Scholar 

  13. Leung R, Poncelet D, Neufeld RJ (1997) Enhancement of oxygen transfer rate using microencapsulated silicone oils as oxygen carriers. J Chem Technol Biotechnol 68:37–46

    Article  CAS  Google Scholar 

  14. Liu CY, Webster DA (1974) Spectral characteristics and interconversions of the reduced, oxidized, oxygenated forms of purified cytochrome o. J Biol Chem 249:4261–4266

    CAS  PubMed  Google Scholar 

  15. Makhotkina TA, Pomortseva NV, Lomova IE, Nikolaev PI (1981) Glycerol transformations into dihydroxyacetone by polyacrylamide gel immobilized cells of Gluconobacter oxydans. Prikl Biokhim Mikrobiol 17:102–106

    CAS  Google Scholar 

  16. Merfort M, Herrmann U, Bringer-Meyer S, Sahm H (2006) High-yield 5-keto-d-gluconic acid formation is mediated by soluble and membrane-bound gluconate-5-dehydrogenases of Gluconobacter oxydans. Appl Microbiol Biotechnol 73:443–451

    Article  CAS  PubMed  Google Scholar 

  17. Park KW, Kim KJ, Howard AJ, Stark BC, Webster DA (2002) Vitreoscilla hemoglobin binds to subunit I of cytochrome bo ubiquinol oxidases. J Biol Chem 277:33334–33337

    Article  CAS  PubMed  Google Scholar 

  18. Prust C, Hoffmeister M, Liesegang H, Wiezer A, Fricke WF (2005) Complete genome sequence of the acetic acid bacterium Gluconobacter oxydans. Nat Biotechnol 23:195–200

    Article  CAS  PubMed  Google Scholar 

  19. Saito Y, Ishii Y, Hayashi H, Imao Y, Akashi T, Yoshikawa K, Noguchi Y, Soeda S, Yoshida M, Niwa M, Hosoda J, Shimomura K (1997) Cloning of genes coding for l-sorbose and l-sorbosone dehydrogenases from Gluconobacter oxydans and microbial production of 2-keto-l-gulonate, a precursor of l-ascorbic acid in a recombinant G. oxydans strain. Appl Environ Microbiol 63:454–460

    CAS  PubMed  Google Scholar 

  20. Wei XX, Chen GQ (2008) Applications of the VHb gene vgb for improved microbial fermentation processes. Methods Enzymol 436:269–283

    Google Scholar 

  21. Yang XP, Wei LJ, Lin JP, Yin B, Wei DZ (2008) Membrane-bound pyrroloquinoline quinone-dependent dehydrogenase in Gluconobacter oxydans M5, responsible for product of 6-(2-hydroxyethyl) amino-6-deoxy-l-Sorbose. Appl Environ Microbiol 74:5250–5253

    Article  CAS  PubMed  Google Scholar 

  22. Yu HM, Shi Y, Zhang YP, Yang SL, Shen ZY (2002) Effect of Vitreoscilla hemoglobin biosynthesis in Escherichia coli on production of poly (β-hydroxybutyrate) and fermentative parameters. FEMS Microbiol Lett 214:223–227

    CAS  PubMed  Google Scholar 

  23. Zhang L, Li YJ, Wang ZN, Xia Y, Chen WS, Tang KX (2007) Recent developments and future prospects of Vitreoscilla hemoglobin application in metabolic engineering. Biotechnol Adv 25:123–136

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Key Basic Research Development Program of China (“973” Program, No.2009CB724703), and the National Special Fund for State Key Laboratory of Bioreactor Engineering, Grant No. 2060204.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jinping Lin or Dongzhi Wei.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, M., Wu, J., Lin, J. et al. Expression of Vitreoscilla Hemoglobin Enhances Cell Growth and Dihydroxyacetone Production in Gluconobacter oxydans . Curr Microbiol 61, 370–375 (2010). https://doi.org/10.1007/s00284-010-9621-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-010-9621-6

Keywords

Navigation