Skip to main content

Advertisement

Log in

Lactobacillus and Bifidobacterium Diversity in Horse Feces, Revealed by PCR-DGGE

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Lactobacillus equi, Lactobacillus hayakitensis, Lactobacillus johnsonii, and Weissella confusa/cibaria were the dominant species in 12 South African horses. The Bifidobacterium-group was detected in the feces of only one of the 12 horses. Sequencing of the nested-PCR amplicon identified the Bifidobacterium-group as Parascardovia denticolens. Cell numbers of L. equi, L. hayakitensis, and W. confusa/cibaria were consistent in all samples. P. denticolens, Bifidodobacterium pseudolongum, and a phylogenetic relative of Alloscardovia omnicolens were rarely detected. L. equigenerosi, a dominant species in Japanese horses, was detected in the fecal samples of only one horse.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Altschul SF, Gish W, Miller E, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    CAS  PubMed  Google Scholar 

  2. Andersson H, Asp N-G, Bruce A, Roos A, Wadström T, Wold AE (2001) Health effects of probiotics and prebiotics. A literature review on human studies. Food Nutr Res 45:58–75

    Google Scholar 

  3. Bailey SR, Baillon ML, Rycroft AN, Harris PA, Elliott J (2003) Identification of equine cecal bacteria producing amines in an in vitro model of carbohydrate overload. Appl Environ Microbiol 69:2087–2093

    Article  CAS  PubMed  Google Scholar 

  4. Crociani F, Biavati B, Alessandrini A, Chiarini C, Scardovi V (1996) Bifidobacterium inopinatum sp. nov. and Bifidobacterium denticolens sp. nov., two new species isolated from human dental caries. Int J Syst Bacteriol 46:564–571

    Article  CAS  PubMed  Google Scholar 

  5. Daly K, Stewart CS, Flint H, Shirazi-Beechey SP (2001) Bacterial diversity within the equine large intestine as revealed by molecular analysis of cloned 16S rRNA genes. FEMS Microbiol Ecol 38:141–151

    Article  CAS  Google Scholar 

  6. Endo A, Okada S (2005) Monitoring the lactic acid bacterial diversity during shochu fermentation by PCR-denaturing gradient gel electrophoresis. J Biosci Bioeng 99:216–221

    Article  CAS  PubMed  Google Scholar 

  7. Endo A, Okada S, Morita H (2007) Molecular profiling of Lactobacillus, Streptococcus, and Bifidobacterium species in feces of active racehorses. J Gen Appl Microbiol 53:191–200

    Article  CAS  PubMed  Google Scholar 

  8. Endo A, Roos S, Satoh E, Morita H, Okada S (2008) Lactobacillus equigenerosi sp. nov., a coccoid species isolated from faeces of thoroughbred racehorses. Int J Syst Evol Microbiol 58:914–918

    Article  PubMed  Google Scholar 

  9. Gibson GR, Macfarlane GT (1994) Intestinal bacteria and disease. In: Gibson SAW (ed) Human health—the contribution of microorganisms. Springer-Verlag, London, pp 53–62

    Google Scholar 

  10. Heilig HG, Zoetendal EG, Vaughan EE, Marteau P, Akkermans AD, de Vos WM (2002) Molecular diversity of Lactobacillus spp. and other lactic acid bacteria in the human intestine as determined by specific amplification of 16S ribosomal DNA. Appl Environ Microbiol 68:114–123

    Article  CAS  PubMed  Google Scholar 

  11. Jian W, Dong X (2002) Transfer of Bifidobacterium inopinatum and Bifidobacterium denticolens to Scardovi inopinata gen. nov., comb. nov., and Parascardovia denticolens gen. nov., comb. nov., respectively. Int J Syst Evol Microbiol 52:809–812

    Article  CAS  PubMed  Google Scholar 

  12. Kaufmann P, Pfefferkorn A, Teuber M, Meile L (1997) Identification and quantification of Bifidobacterium species isolated from food with genus-specific 16S rRNA-targeted probes by colony hybridization and PCR. Appl Environ Microbiol 63:1268–1273

    CAS  PubMed  Google Scholar 

  13. Langendijk PS, Schut F, Jansen GJ, Raangs GC, Kamphuis GR, Wilkinson MH, Welling GW (1995) Quantitative fluorescence in situ hybridization of Bifidobacterium spp. with genus-specific 16S rRNA-targeted probes and its application in fecal samples. Appl Environ Microbiol 61:3069–3075

    CAS  PubMed  Google Scholar 

  14. Metchnikoff E (1907) The prolongation of life: optimistic studies. William Heinemann, London

    Google Scholar 

  15. Miettinen M, Vuopio-Varkila J, Varkila K (1996) Production of human necrosis factor a, interleukin 6, and interleukin 10 is induced by lactic acid bacteria. Infect Immun 64:5403–5405

    CAS  PubMed  Google Scholar 

  16. Mungall BA, Kyaw-Tanner M, Pollitt CC (2001) In vitro evidence for a bacterial pathogenesis of equine laminitis. Vet Microbiol 79:209–223

    Article  CAS  PubMed  Google Scholar 

  17. Ouwehand AC, Salminen S, Isolauri E (2002) Probiotics: an overview of beneficial effects. Antonie Van Leeuwenhoek 82:279–289

    Article  CAS  PubMed  Google Scholar 

  18. Rinttilä T, Kassinen A, Malinen E, Krogius L, Palva A (2004) Development of an extensive set of 16S rDNA-targeted primers for quantification of pathogenic and indigenous bacteria in faecal samples by real-time PCR. J Appl Microbiol 97:1166–1177

    Article  PubMed  CAS  Google Scholar 

  19. Rolfe RD (2000) The role of probiotic cultures in the control of gastro-intestinal health. J Nutrit 130(2S):396S–402S

    CAS  PubMed  Google Scholar 

  20. Salminen S, Von Wright A, Morelli L, Marteau P, Brassart D, de Vos WM, Fondén R, Saxelin M, Collins K, Mogensen G, Birkeland SE, Matilla-Sandholm T (1998) Demonstration of safety of probiotics—a review. Int J Food Microbiol 44:93–106

    Article  CAS  PubMed  Google Scholar 

  21. Satokari RM, Vaughan EE, Akkermans AD, Saarela M, de Vos WM (2001) Bifidobacterial diversity in human feces detected by genus-specific PCR and denaturing gradient gel electrophoresis. Appl Environ Microbiol 67:504–513

    Article  CAS  PubMed  Google Scholar 

  22. Schwab JH (1993) Phylogistic properties of peptide-glycan-polysaccharide polymers from cell walls of pathogenic and normal-flora bacteria which colonise humans. Infect Immun 61:4535–4539

    CAS  PubMed  Google Scholar 

  23. Tajima K, Aminov RI, Nagamine T, Ogata K, Nakamura M, Matsui H, Benno Y (1999) Rumen bacterial diversity as determined by sequence analysis of 16S rDNA libraries. FEMS Microbiol Ecol 29:159–169

    Article  CAS  Google Scholar 

  24. Tang P, Foubister V, Pucciarelli MG, Finlay BB (1993) Methods to study bacterial invasion. J Microbiol Meth 23:119–125

    Google Scholar 

  25. Walter J, Hertel C, Tannock GW, Lis CM, Munro K, Hammes WP (2001) Detection of Lactobacillus, Pediococcus, Leuconostoc, and Weissella species in human feces by using group-specific PCR primers and denaturing gradient gel electrophoresis. Appl Environ Microbiol 67:2578–2585

    Article  CAS  PubMed  Google Scholar 

  26. Weese JS, Anderson MEC, Lowe A, Monteith GJ (2003) Preliminary investigation of the probiotic potential of Lactobacillus rhamnosus strain GG in horses: fecal recovery following oral administration and safety. Can Vet J 44:299–302

    PubMed  Google Scholar 

  27. Weese JS, Rousseau J (2005) Evaluation of Lactobacillus pentosus WE7 for prevention of diarrhea in neonatal foals. J Am Vet Med Assoc 226:2031–2034

    Article  PubMed  Google Scholar 

  28. Whitford MF, Forster RJ, Beard CE, Gong J, Teather RM (1998) Phylogenetic analysis of rumen bacteria by comparative sequence analysis of cloned 16S rRNA genes. Anaerobe 4:153–163

    Article  CAS  PubMed  Google Scholar 

  29. Yuki N, Shimazaki T, Kushiro A, Watanabe K, Uchida K, Yuyama T, Morotomi M (2000) Colonization of the stratified squamous epithelium of the nonsecreting area of horse stomach by lactobacilli. Appl Environ Microbiol 66:5030–5034

    Article  CAS  PubMed  Google Scholar 

  30. Yuyama T, Takai S, Tsubaki S, Kado Y, Morotomi M (2004) Evaluation of a host-specific Lactobacillus probiotics in training horses and neonatal foals. J Intest Microbiol 18:101–106

    Google Scholar 

Download references

Acknowledgments

The authors thank Prof. S. Okada (NODAI Culture Collection Center, Tokyo University of Agriculture) for providing the NRIC strains. Dr. A. Endo received a postdoctoral grant from Claude Leon Foundation, Cape Town, South Africa.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akihito Endo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Endo, A., Futagawa-Endo, Y. & Dicks, L.M.T. Lactobacillus and Bifidobacterium Diversity in Horse Feces, Revealed by PCR-DGGE. Curr Microbiol 59, 651–655 (2009). https://doi.org/10.1007/s00284-009-9498-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-009-9498-4

Keywords

Navigation