Skip to main content
Log in

Characterization of a Hemolysin Gene ytjA from Bacillus subtilis

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Bacillus subtilis is popularly used as a probiotic in many fields. Although recent research has found that some secondary metabolites of B. subtilis could cause hemolysis, the hemolytic mechanism in B. subtilis is still unclear. In this paper, the hemolysis-associated gene ytjA was cloned and expressed in Escherichia coli, and the hemolytic activity of the expressed soluble protein was indicated by the presence of clear hemolytic zones on sheep blood agar plates. In addition, reverse transcriptase-polymerase chain reaction analysis confirmed that the ytjA gene was transcribed in B. subtilis. These results suggest that ytjA is one of the hemolysin genes responsible for hemolysis in B. subtilis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Alouf JE, Kiredjian M, Geoffroy C (1977) Purification of an extracellular thiol-dependent hemolysin from Bacillus alvei. Biochimie 59:329–336

    Article  PubMed  CAS  Google Scholar 

  2. Asao TA, Kinoshita Y, Kozaki S et al (1984) Purification and some properties of Aeromonas hydrophila hemolysin. Infect Immun 46:122–127

    PubMed  CAS  Google Scholar 

  3. Beutin L (1991) The different hemolysins of Escherichia coli. Med Microbiol Immunol 180:167–182

    Article  PubMed  CAS  Google Scholar 

  4. Bhakdi S, Bayley H, Valeva A et al (1996) Staphylococcal alpha-toxin, streptolysin-O, and Escherichia coli hemolysin: prototypes of pore-forming bacterial cytolysins. Arch Microbiol 165:73–79

    Article  PubMed  CAS  Google Scholar 

  5. Budarina ZI, Sinev MA, Mayorov SG et al (1994) Hemolysin II is more characteristic of Bacillus thuringiensis than Bacillus cereus. Arch Microbiol 161:252–257

    PubMed  CAS  Google Scholar 

  6. Chang CT, Fan MH, Kuo FC (2000) Potent fibrinolytic enzyme from a mutant of Bacillus subtilis IMR-NK1. J Agric Food Chem 48:3210–3216

    Article  PubMed  CAS  Google Scholar 

  7. Davies RL, Baillie S (2003) Cytotoxic activity of Mannheimia haemolytica strains in relation to diversity of the leukotoxin structural gene lktA. Vet Microbiol 92:263–279

    Article  PubMed  CAS  Google Scholar 

  8. De Vuyst L, Foulquie Moreno MR, Revets H (2003) Screening for enterocins and detection of hemolysin and vancomycin resistance in enterococci of different origins. Int J Food Microbiol 84:299–318

    Article  PubMed  Google Scholar 

  9. Galanos J, Perera S, Smith H et al (2003) Bacteremia due to three Bacillus species in a case of Munchausen’s syndrome. J Clin Microbiol 41:2247–2248

    Article  PubMed  Google Scholar 

  10. Gholamreza D-N, Mohammadreza H, BibiFazly Bazzaz S, Fazly B (2005) Isolation, characterization, and investigation of surface and hemolytic activities of a lipopeptide biosurfactant produced by Bacillus subtilis ATCC 6633. J Microbiol 43:272–276

    Google Scholar 

  11. Gilbert RJ, Rossjohn J, Parker MW et al (1998) Self-interaction of pneumolysin, the pore-forming protein toxin of Streptococcus pneumoniae. J Mol Biol 284:1223–1237

    Article  PubMed  CAS  Google Scholar 

  12. Gross MK, Au DC, Smith AL et al (1992) Targeted mutations that ablate either the adenylate cyclase or hemolysin function of the bifunctional cyaA toxin of Bordetella pertussis abolish virulence. Proc Natl Acad Sci USA 89:4898–4902

    Article  PubMed  CAS  Google Scholar 

  13. Heinzmann S, Entian KD, Stein T (2006) Engineering Bacillus subtilis ATCC6633 for improved production of the antibiotic subtilin. Appl Microbiol Biotechnol 69:532–536

    Article  PubMed  CAS  Google Scholar 

  14. Hofemeister J, Conrad B, Adler B et al (2004) Genetic analysis of the biosynthesis of non-ribosomal peptide- and polyketide-like antibiotics, iron uptake and biofilm formation by Bacillus subtilis A1/3. Mol Genet Genomics 272:363–378

    Article  PubMed  CAS  Google Scholar 

  15. Hsieh F-C, Li M-C, Lin T-C et al (2004) Rapid detection and characterization of surfactin-producing Bacillus subtilis and closely related species based on PCR. Curr Microbiol 49:186–191

    Article  PubMed  CAS  Google Scholar 

  16. Hughes C, Hacker J, Roberts A et al (1983) Hemolysin production as a virulence marker in symptomatic and asymptomatic urinary tract infections caused by Escherichia coli. Infect Immun 39:546–551

    PubMed  CAS  Google Scholar 

  17. Iwamoto M, Ohno-Iwashita Y, Ando S (1990) Effect of isolated C terminal fragment of q-toxin (perfringolysin O) on toxin assembly and membrane lysis. Eur J Biochem 194:25–31

    Article  PubMed  CAS  Google Scholar 

  18. Kehoe MA, Miller L, Walker JA et al (1987) Nucleotide sequence of the streptolysin O (SLO) gene: structural homologies between SLO and other membrane-damaging thiol-activated toxins. Infect Immun 55:3228–3232

    PubMed  CAS  Google Scholar 

  19. Kiredjian M (1977) Characterization of the thio-dependent hemolysin of Bacillus alvei. Ann Biol Clin (Paris) 35:325–328

    CAS  Google Scholar 

  20. Koronakis V, Cross M, Senior B et al (1987) The secreted hemolysins of Proteus mirabilis, Proteus vulgaris, and Morganella morganii are genetically related to each other and to the alpha-hemolysin of Escherichia coli. J Bacteriol 169:1509–1515

    PubMed  CAS  Google Scholar 

  21. Kreft J, Berger H, Härtlein M et al (1983) Cloning and expression in Escherichia coli and Bacillus subtilis of the hemolysin (cereolysin) determinant from Bacillus cereus. J Bacteriol 155:681–689

    PubMed  CAS  Google Scholar 

  22. Kunst F, Ogasawara N, Moszer I et al (1997) The complete genome sequence of the gram-positive bacterium Bacillus subtilis. Nature 390:249–256

    Article  PubMed  CAS  Google Scholar 

  23. Leila M, de Lima Ramos Mariano R, Ana Maria S-M (2005) Antagonism of Bacillus spp against Xanthomonas campestris pv. Campestris. Braz Arch Boil Technol 48:23–29

    Google Scholar 

  24. Leser TD, Knarreborg A, Worm J (2008) Germination and outgrowth of Bacillus subtilis and Bacillus licheniformis spores in the gastrointestinal tract of pigs. J Appl Microbiol 104:1025–1033

    Article  PubMed  CAS  Google Scholar 

  25. Liu G, Zhai C (2004) A current and speedy extraction method for bacterial chromosomal DNA from a trifle of broth. Med J West China 16:111–113

    Google Scholar 

  26. Liu J, Fang C, Li W et al (2007) Construction of Bacillus subtilis 224 yugS mutant by homologous recombination method. Biotechnol Bull 4:148–151

    Google Scholar 

  27. Matsumoto S, Suenaga H, Naito K et al (2000) Management of suspected nosocomial infection: an audit of 19 hospitalized patients with septicemia caused by Bacillus species. Jpn J infect Dis 53:196–202

    PubMed  CAS  Google Scholar 

  28. Michel E, Reich KA, Favier R et al (1990) Attenuated mutants of the intracellular bacterium Listeria monocytogenes obtained by single amino acid substitutions in listeriolysin O. Mol Microbiol 4:2167–2178

    Article  PubMed  CAS  Google Scholar 

  29. Moŕanl AC, Alejandra Martίnezl M, Siñeriz F (2002) Quantification of surfactin in culture supernatants by hemolytic activity. Biotechnol Lett 24:177–180

    Article  Google Scholar 

  30. Paulitz TC, Belanger RR (2001) Biological control in green house systems. Annu Rev Phytopathol 39:103–133

    Article  PubMed  CAS  Google Scholar 

  31. Peng W, Xie J (2002) Effect of Bacillus subtilis viable-preparation for second-degree burn wound healing. Qinghai Med J 32:5–6

    Google Scholar 

  32. Phillips JR, Tripp TJ, Regelmann WE et al (2006) Staphylococcal alpha-toxin causes increased tracheal epithelial permeability. Pediatr Pulmonol 41:1146–1152

    Article  PubMed  Google Scholar 

  33. Qi H, Ma Z, Wang S et al (1991) Research summary report on Subtilobiogen. Chin J Microecol 3:1–11

    Google Scholar 

  34. Rossjohn J, Feil SC, Mckinstrey WJ et al (1997) Structure of a cholesterol-binding, thiol-activated cytolysin and a model of its membrane form. Cell 89:685–692

    Article  PubMed  CAS  Google Scholar 

  35. Swain MR, Ray RC (2007) Alpha-amylase production by Bacillus subtilis CM3 in solid state fermentation using cassava fibrous residue. J Basic Microbiol 47:513–517

    Article  Google Scholar 

  36. Waalwlk C, van den Bosch JF, MacLaren DM et al (1982) Hemolysin plasmid encoding for the virulence of a nephropathogenic Escherichia coli strain. Infect Immun 35:32–37

    Google Scholar 

  37. Wang W, Gao Q, He S (2002) Observation of curative effect of Bacillus subtilis viable-preparation for second-degree burn in the face and neck. J Ningxia Med Coll 24:363–364

    Google Scholar 

  38. Weinstein SA, Bernheimer AW, Oppenheim JD (1988) Isolation of a hemolysin from a spore-crystal mixture of Bacillus thuringiensis israelensis (serotype H-14). Toxicon 26:733–746

    Article  PubMed  CAS  Google Scholar 

  39. Wekh RA, Dellinger EP, Minsbew B et al (1981) Hemolysin contributes to virulence of extraintestinal E. coli infections. Nature (London) 294:665–667

    Article  Google Scholar 

  40. Zhang Y-X, Yan G, Bi B et al (2005) Identification and classification of all potential hemolysin encoding genes and their products from Leptospira interrogans serogroup Icterohae-morrhagiae serovar Lai. Acta Pharmacol Sin 26:453–461

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Professor Aiguang Guo of the Shaanxi Key Laboratory of Agricultural Molecular Biology, China, for providing research facilities for this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, J., Fang, C., Jiang, Y. et al. Characterization of a Hemolysin Gene ytjA from Bacillus subtilis . Curr Microbiol 58, 642–647 (2009). https://doi.org/10.1007/s00284-009-9383-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-009-9383-1

Keywords

Navigation