Skip to main content
Log in

l-Methioninase Production by Filamentous Fungi: I-Screening and Optimization Under Submerged Conditions

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Findings show 21 fungal isolates belonging to eight genera recovered from Egyptian soils that have the potential to attack l-methionine under submerged conditions. Aspergillus flavipes had the most methioninolytic activity, giving the highest yield of l-methioninase (10.78 U/mg protein), rate of methionine uptake (93.0%), and growth rate (5.0 g/l), followed by Scopulariopsis brevicaulis and A. carneus. The maximum l-methioninase productivity (11.60 U/mg protein) by A. flavipes was observed using l-methionine (0.8%) as an enzyme-inductive agent and glucose (1%) as a co-dissimilated carbon source. A significant reduction in l-methioninase biosynthesis by A. flavipes was detected using carbon-free medium, suggesting the lack of ability to use l-methionine as a carbon and nitrogen source. Potassium dihydrogen phosphate (0.25%), the best source of phosphorus, favors enzyme biosynthesis and enhances the level of methionine uptake by A. flavipes. The maximum l-methioninase productivity (12.58 U/mg protein) and substrate uptake (95.6%) were measured at an initial pH of 7.0.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Abarca ML, Accensi F, Cano J, Cabanes FJ (2004) Taxonomy and significance of black aspergilli. Antonie Van Leewenhoek 86:33–49

    Article  CAS  Google Scholar 

  2. Amarita F, Yvon M, Nardi M et al (2004) Identification and functional analysis of the gene encoding methionine-γ-lyase in Brevibacterium linens. Appl Environ Microbiol 70:7348–7354

    Article  PubMed  CAS  Google Scholar 

  3. Arfi K, Landaud S, Bonnarme P (2006) Evidence for distinct l-methioninne catabolic pathways in the Yeast Geotrichum candidum and the bacterium Brevibacterium linens. Appl Environ Microbiol. 72:2155–2161

    Article  PubMed  CAS  Google Scholar 

  4. Bergstorm M, Ericson K, Hagenfeldt L (1987) PET study of methionine accumlation in glioma and normal brain tissue: competition with branched chain aminho acids. J Comput Assist Tomogr 11:208–213

    Google Scholar 

  5. Bilgrami KS, Verma RN (1981) Physiology of fungi, 2nd edn. Vikas Publishing, PVT, Ltd Indian, pp 23–27

  6. Bondar DC, Beckerich JM, Bonnarme P (2005) Involvement of a branched-chain aminotransferase in production of volatile sulfur compounds. Yarrwialipolytica 71:4585–4591

    CAS  Google Scholar 

  7. Bonnarme P, Lapadatescu C, Yvon M, Spinnler HE (2001) l-methionine degradation potentialties of cheese-ripening microorganisms. J Dairy Res 68:663–674

    Article  PubMed  CAS  Google Scholar 

  8. Booth C (1971) The genus Fusarium. Commenwealth Mycological Institute, Kew

    Google Scholar 

  9. Breillout F, Antoine E, Poupon MF (1990) Methionine dependency of malignant tumors: a possible approach for therapy. J Natl Cancer Inst 82:1628–1632

    Article  PubMed  CAS  Google Scholar 

  10. Caddick MX, Peters D, Platt A (1994) Nitrogen regulation in fungi. Antoine van Leeuwenhoek 65:169–177

    Article  CAS  Google Scholar 

  11. Challenger F, Charlton PT (1947) Studies on biological methylation. 10. The fission of the mono and disulfide links by molds. J Chem Soc (Lond) 424–429

  12. Cuer A, Dauphin G, Kergomard A et al (1979) Flavour properties of some sulphur compounds isolated from cheeses. Lebensmittelwiss Technol 12:258–261

    CAS  Google Scholar 

  13. Domsch KH, Gams W, Anderson T (1980) Compendium of soil fungi. Academic Press

  14. dos Passos JB, Vanhalewyn M, Brandao RL (1992) Glucose-induced activation of plasma membrane H+-ATPase in mutants of the yeast Saccharomyces cerevisiae affected in cAMP metabolism, cAMP-dependent protein phosphorylation, and the initiation of glycolysis. Biochemica et Biophysica Acta 1136:57–67

    CAS  Google Scholar 

  15. Ellis MB (1971) Dematiaceous Hyphomycetes. Commonwealth Mycological Institute, Kew

    Google Scholar 

  16. El Sayed ASA (2008) l-glutaminase production by Trichoderma koningii under solid state fermentation. Ind J Microbiol (in press)

  17. Halpern BC, Clark BR, Hardy DN et al (1974) The effect of replacement of methionine by hemocystine on survival of malignant and normal adult mammalian cells in culture. Proc Natl Acad Sci USA 71:1133–1136

    Article  PubMed  CAS  Google Scholar 

  18. Hawkins DS, Park JR, Thomson BG et al (2004) Asparaginase pharmacokinetics after intensive polyethylene glycol-conjugated l-asparaginase therapy for children with relapsed acute lymphoblastic leukemia. Clin Cancer Res 10:5335–5341

    Article  PubMed  CAS  Google Scholar 

  19. Hess WC, Sullivan MX (1943) The cysteins, cystine and methionine content of proteins. J Biol Chem 151:635–642

    CAS  Google Scholar 

  20. Hori H, Takabayashi K, Orvis L et al (1996) Gene cloning and characterization of Pseudomonas putida l-methionine-α-deamino-γ-mercaptomethane-lyase. Cancer Res 56:2116–2122

    PubMed  CAS  Google Scholar 

  21. Ito S, Nakamura T, Eguchi Y (1976) Purification and characterization of methioninase from P. putida. J Biohem 79:1263–1272

    CAS  Google Scholar 

  22. Jennings DH (1995) The physiology of fungal nutrition, 1st edn. Cambridge University Press, Cambridge

  23. Johnson LF, Curl EA, Bond JH, Fribourg HA (1959) Methods for studying soil microflora—plant disease relationships. Burgess Publishing Co., MN

    Google Scholar 

  24. Kawashima K, Takeshima H, Higashi Y et al (1991) High efficacy of monomethoxypolyethylene glycol: conjugated l-asparaginase (PEG2-ASP) in two patients with hematological malignancies. Leukemia Res 15:525–530

    Article  CAS  Google Scholar 

  25. Kokkinakis DM, Hoffman RM, Frankel EP (2001) Synergy between methionine stress and chemotheray in the treatment of brain tumor xenografts in athymic mice. Cancer Res 61:4017–4023

    PubMed  CAS  Google Scholar 

  26. Kokkinakis DM, Schold SC Jr, Hori H, Nobori T (1997) Effect of long-term depletion of plasma methionine on the growth and survival of human brain xenografts in athymic mice. Nutr Cancer 29:195–204

    Article  PubMed  CAS  Google Scholar 

  27. Lockwood BC, Coombs GH (1999) Purification and characterization of methionine γ-lyase from Trichomonas vaginalis. Biochem J 279:675–682

    Google Scholar 

  28. Lowry OH, Rosebrough NJ, Farr AL et al (1951) Protein measurements with the Folin phenol reagent. J Biol Chem 193:265–275

    Google Scholar 

  29. Lund F (1995) Differeniating Penicillium species by detection of indole metabolites using a filter paper mehod. Lett Appl Microbiol 20:228–231

    Article  CAS  Google Scholar 

  30. Merricks DL, Salsbury RL (1974) Involvement of vitamin B6 in the dethiomethylation of methionine by rumen microorganisms. Appl Microbiol 28:106–111

    PubMed  CAS  Google Scholar 

  31. Mitchell AP, Magasanik B (1984) Regulation of glutamate-repressible gene products by the GLN3 function in Saccharomyces cerevisiae. Mol Cell Biol 4:2758–2766

    PubMed  CAS  Google Scholar 

  32. Monk BC, Niimi M, Shepherd MG (1993) The Candida albicans plasma membrane and H+-ATPase during yeast growth and germ tube formation. J Bacteriol 175:5566–5574

    PubMed  CAS  Google Scholar 

  33. Nakayama T, Esaki N, Lee EJ et al (1984) Agric Biol Chem 48:2367–2369

    CAS  Google Scholar 

  34. Ohigashi K, Tsunetoshi A, Ichihara K (1951) The role of pyridoxal in methylmercaptan formation partial purification and resolution of methioninase. Med J Osaka Univ 2:111–117

    CAS  Google Scholar 

  35. Pall ML (1971) Amino acid transport in Neurospora crassa: IV. Properties and regulation of a methionine transport system. Biochem Biophys Acta 233:201–214

    Article  PubMed  CAS  Google Scholar 

  36. Pitt JI (1979) The Genus Penicillium and Its Teleomorphic States Eupenicillium and Talaromyces. Academic Press, London

    Google Scholar 

  37. Raper KB, Fennell DI (1965) The genus Aspergillus. The Williams and Wilkins Company, Baltimore

    Google Scholar 

  38. Rifai MA (1969) A revision of the genus Trichoderma. Commonwealth Mycological Institute, Kew

    Google Scholar 

  39. Ruiz-Herrera J, Starkey R (1970) Dissimilation of methionine by Achromobacter starkeyi. J Bacteriol 104:1286–1293

    PubMed  CAS  Google Scholar 

  40. Ruiz-Herrera J, Starkey RL (1969) Dissimilation of methionine by fungi. J Bacteriol 94:544–551

    Google Scholar 

  41. Ruiz-Herrera J, Starkey RL (1969) Dissimilation of methionine by a demethiolase of Aspergillus species. J Bacteriol 99:764–770

    PubMed  CAS  Google Scholar 

  42. Samson RA, Noonim P, Meijer M et al (2007) Diagnostic tools to identify black aspergilli. Stud Mycol 59:129–145

    Article  PubMed  CAS  Google Scholar 

  43. Snedecor GW, Cochran WG (1982) Statistical Methods, 6th ed. edn. Blackwell Science Ltd, London, p 147

    Google Scholar 

  44. Stahl WH, Ncqu B, Mandels GR et al (1949) Studies on the microbiological degradation of wool. 1. Sulfur metabolism. Arch Biochem 20:422–432

    PubMed  CAS  Google Scholar 

  45. Tan Y, Sun X, Xu M et al (1998) Polyethylene glycol conjugation of recombinant methioninase for cancer therapy protein. Expr Purif 12:45–52

    Article  CAS  Google Scholar 

  46. Tan Y, Xu M, Guo H et al (1996) Anticancer efficacy of methioninase in vivo. Anticancer Res 16:3931–3936

    PubMed  CAS  Google Scholar 

  47. Tan Y, Xu M, Tan X et al (1997) Overexpression and large-scale production of recombinant l-methionine-α-deamine-δ-mercaptomethane-lyase for novel anticancer therapy. Protein Expr Purif 9:233–245

    Article  PubMed  CAS  Google Scholar 

  48. Tanaka H, Esaki N, Yamamoto T, Sodo K (1976) Purification and properties of methioninase from Pseudomonas ovalis. FEBS Lett 66:307–311

    Article  PubMed  CAS  Google Scholar 

  49. Tsugo T, Matsuko M (1962) The formation of volatile sulfur compounds during the ripening of the semisoft white mould cheese. In: Proceedings of the 16th international dairy congress, Copenhagen, Denmark, vol B, pp 385–394

  50. Thompson JF, Morrison GR (1951) Determination of organic nitrogen: control of variables in the use of Nessler’s reagent. Anal Chem 23:1153–1157

    Google Scholar 

  51. Wiesendanger S, Nisman B (1953) La l-methionine demercapto desaminase: un novel enzyme a’ pyridoxal phosphate. Compt Rend 237:764–765

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashraf S. A. El-Sayed .

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khalaf, S.A., El-Sayed , A.S.A. l-Methioninase Production by Filamentous Fungi: I-Screening and Optimization Under Submerged Conditions. Curr Microbiol 58, 219–226 (2009). https://doi.org/10.1007/s00284-008-9311-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-008-9311-9

Keywords

Navigation