Skip to main content
Log in

Fluorescence Spectroscopy as a Promising Tool for a Polyphasic Approach to Pseudomonad Taxonomy

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Fluorescence spectroscopy is an emerging tool for the analysis of biomolecules from complex matrices. We explored the potentialities of the method for the pseudomonad taxonomic purpose at the genus and species level. Emission spectra of three intrinsic fluorophores (namely, NADH, tryptophan, and the complex of aromatic amino acids and nucleic acid) were collected from whole bacterial cells. Their comparisons were performed through principal component analysis and factorial discriminant analysis. Reference strains from the Xanthomonas, Stenotrophomonas, Burkholderia, and Pseudomonas genera were well separated, with sensitivity and selectivity higher than 90%. At the species level, P. lundensis, P. taetrolens, P. fragi, P. chlororaphis, and P. stutzeri were also well separated, in a distant group, from P. putida, P. pseudoalcaligenes, and P. fluorescens. These results are in agreement with the generally admitted rRNA and DNA bacterial homology grouping but they also provide additional information about strain relatedness. In the case of environmental isolates, the method allows good discrimination, even for strains for which ambiguity still remained after PCR and API 20NE identification. Rapid, easy to perform, and low cost, fluorescence spectroscopy provides substantial information on cell components. Statistical analysis of collected data allows in-depth comparison of strains. Our results strongly support the view that fluorescence spectroscopy fingerprinting can be used as a powerful tool in a polyphasic approach to pseudomonad taxonomy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Ait Tayeb L, Ageron E, Grimont F, Grimont PAD (2005) Molecular phylogeny of the genus Pseudomonas based on rpoB sequences and application for the identification of isolates. Res Microbiol 156:763–773

    Article  PubMed  CAS  Google Scholar 

  2. Ammor MS (2007) Recent advances in the use of intrinsic fluorescence for bacterial identification and characterization. J Fluoresc 17:455–459

    Article  PubMed  CAS  Google Scholar 

  3. Anzai Y, Kudo Y, Oyaizu H (1997) The phylogeny of the genera Chryseomonas, Flavimonas, and Pseudomonas supports synonymy of these three genera. Int J Syst Bacteriol 47:249–251

    PubMed  CAS  Google Scholar 

  4. Anzai Y, Kim H, Park JY, Wakabayashi H, Oyaizu H (2000) Phylogenetic affiliation of the Pseudomonads based on 16S rRNA sequence. Int J Syst Evol Microbiol 50:1563–1589

    PubMed  CAS  Google Scholar 

  5. Bertrand D, Scotter CNG (1992) Application of multivariate analyses to NIR spectra of gelatinized starch. Appl Spectrosc 46:1420–1425

    Article  CAS  Google Scholar 

  6. Bhatta H, Goldys EM, Learmonth RP (2006) Use of fluorescence spectroscopy to differentiate yeast and bacterial cells. Appl Microbiol Biotechnol 71:121–126

    Article  PubMed  CAS  Google Scholar 

  7. Bodilis J, Barray S (2006) Molecular evolution of the major outer-membrane protein gene (oprF) of Pseudomonas. Microbiology 152:1075–1088

    Article  PubMed  CAS  Google Scholar 

  8. Bossis E, Lemanceau P, Latour X, Gardan L (2000) The taxonomy of Pseudomonas fluorescens and Pseudomonas putida: current status and need for revision. Agronomie 20:51–63

    Article  Google Scholar 

  9. Cantor CR, Schimmel PR (1980) Other optical techniques. In: Biophysical chemistry. Part 2: techniques for the study of biological structure and function. W. H. Freeman, New York, pp 409–480

  10. Chen F, Xia Q, Ju L-K (2003) Aerobic denitrification of Pseudomonas aeruginosa monitored by online NAD(P)H fluorescence. Appl Environ Microbiol 69:6715–6722

    Article  PubMed  CAS  Google Scholar 

  11. Coates KJ, Beattie JC, Morgan IR, Widders PR (1995) The contribution of carcass contamination and the boning process to microbial spoilage of aerobically stored pork. Food Microbiol 12:49–54

    Article  Google Scholar 

  12. De Vos D, Bouton C, Sarniguet A, De Vos P, Vauterin M, Cornelis P (1998) Sequence diversity of the oprI gene, coding for major outer membrane lipoprotein I, among rRNA group I pseudomonads. J Bacteriol 180:6551–6556

    PubMed  Google Scholar 

  13. De vos P, Van Landschoot A, Segers P, Tytgat R, Gillis M, Bauwens M, Rossau R, Pot B, Kerstars K, Lizzaraga P, De Ley J (1989) Genotypic relationships and taxonomic localization of unclassified Pseudomonas and Pseudomonas-like strains by deoxyribonucleic acid: ribosomal ribonucleic acid hybridizations. Int J Syst Bacteriol 39:35–49

    Article  Google Scholar 

  14. Estes C, Duncan A, Wade B, Lloyd C, Ellis W, Powers L (2003) Reagentless detection of microorganisms by intrinsic fluorescence. Biosens Bioelectron 18:511–519

    Article  PubMed  CAS  Google Scholar 

  15. Filip Z, Hermann S (2001) An attempt to differentiate Pseudomonas spp. and other soil bacteria by FT-IR spectroscopy. Eur J Soil Biol 37:137–143

    Article  CAS  Google Scholar 

  16. Giana HE, Silveira L, Zângaro RA, Pacheco MTT (2003) Rapid identification of bacterial species by fluorescence spectroscopy and classification through principal components analysis. J Fluoresc 13:489–493

    Article  CAS  Google Scholar 

  17. Herbert S, Mouhous Riou N, Devaux MF, Riaublanc A, Bouchet B, Gallant DJ, Dufour E (2000) Monitoring the identity and the structure of soft cheeses by fluorescence spectroscopy. Lait 80:621–634

    Article  CAS  Google Scholar 

  18. Hilario E, Buckley TR, Young JM (2004) Improved resolution on the phylogenetic relationships among Pseudomonas by the combined analysis of atp D, car A, rec A and 16S rDNA. Antonie van Leeuwenhoek 86:51–64

    Article  PubMed  CAS  Google Scholar 

  19. Holt JG, Krieg NR, Sneath PHA, Staley JT, Williams ST (eds) (1994) Bergey’s manual of systematic bacteriology, 9th edn. Williams & Wilkins, Baltimore, MD

    Google Scholar 

  20. Jolliffe IT (1986) Principal component analysis. Springer, New York

    Google Scholar 

  21. Kersters K, Ludwig W, Vancanneyt M, De Vos P, Gillis M, Scheleifer K-H (1996) Recent changes in the classification of the pseudomonads: an overview. Syst Appl Microbiol 19:465–477

    Google Scholar 

  22. Lakowicz JR (1999) Principles of fluorescence spectroscopy, 2nd edn. Plenum, New York

    Google Scholar 

  23. Lalucat J, Bennasar A, Bosch R, Garcia-Valdes E, Palleroni NJ (2006) Biology of Pseudomonas stutzeri. Microbiol Mol Biol Rev 70:510–547

    Article  PubMed  CAS  Google Scholar 

  24. Leblanc L, Dufour E (2002) Monitoring the identity of bacteria using their intrinsic fluorescence. FEMS Microbiol Lett 211:147–153

    Article  PubMed  CAS  Google Scholar 

  25. Leriche F, Bordessoules A, Fayolle K, Karoui R, Laval K, Leblanc L, Dufour E (2004) Alteration of raw-milk cheese by Pseudomonas spp.: monitoring the sources of contamination using fluorescence spectroscopy and metabolic profiling. J Microbiol Methods 59:33–41

    Article  PubMed  CAS  Google Scholar 

  26. Lyczak JB, Cannon CL, Pier GB (2000) Establishment of Pseudomonas aeruginosa infection: lessons from a versatile opportunist. Microb Infect 2:1051–1060

    Article  CAS  Google Scholar 

  27. Mark G, Morrissey JP, Higgins P, O’Gara F (2006) Molecular-based strategies to exploit Pseudomonas biocontrol strains for environmental biotechnology applications. FEMS Microbiol Ecol 56:167–177

    Article  PubMed  CAS  Google Scholar 

  28. Meyer J-M, Geoffroy VA, Baida N, Gardan L, Izard D, Lemanceau P, Achouak W, Palleroni NJ (2002) Siderophore typing, a powerful tool for the identification of fluorescent and nonfluorescent pseudomonads. Appl Environ Microbiol 68:2745–2753

    Article  PubMed  CAS  Google Scholar 

  29. Moore ERB, Mau M, Arnscheidt A, Bottger EC, Hutson RA, Collins MD, Van de Peer Y, DeWachter R, Timmis KN (1996) The determination and comparison of the 16S rRNA gene sequences of species of the genus Pseudomonas (sensu stricto) and estimation of the natural intrageneric relationships. Syst Appl Microbiol 19:478–492

    CAS  Google Scholar 

  30. Quezada M, Buitron G, Moreno-Andrade I, Moreno G, Lopez-Marin LM (2007) The use of fatty acid methyl esters as biomarkers to determine aerobic, facultatively aerobic and anaerobic communities in wastewater treatment systems. FEMS Microbiol Lett 266:75–82

    Article  PubMed  CAS  Google Scholar 

  31. Robert P, Devaux MF, Bertrand D (1996) Beyond prediction: extracting relevant information from near infrared spectra. J Near Infrared Spectro 4:75–84

    CAS  Google Scholar 

  32. Spiers AJ, Buckling A, Rainey PB (2000) The causes of Pseudomonas diversity. Microbiology 146:2345–2350

    PubMed  CAS  Google Scholar 

  33. Weller DM (2007) Pseudomonas biocontrol agents of soilborne pathogens: looking back over 30 years. Phytopathology 97:250–256

    Article  PubMed  Google Scholar 

  34. Widders PR, Coates KJ, Warner S, Beattie JC, Morgan IR, Hickey MW (1995) Controlling microbial contamination on beef and lamb meat during processing. Aust Vet J 72:208–211

    Article  PubMed  CAS  Google Scholar 

  35. Widmer F, Seidler RJ, Gillevet PM, Watrud LS, Di Giovanni GD (1998) A highly selective PCR protocol for detecting 16S rRNA genes of the genus Pseudomonas (sensu stricto) in environmental samples. Appl Environ Microbiol 64:2545–2553

    PubMed  CAS  Google Scholar 

  36. Yamamoto S, Kasai H, Arnold DL, Jackson RW, Vivian A, Harayama S (2000) Phylogeny of the genus Pseudomonas: intrageneric structure reconstructed from the nucleotide sequences of gyrB and rpoD genes. Microbiology 146:2385–2394

    PubMed  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported by a research grant from the Albaath University of Syria.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Françoise Leriche.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tourkya, B., Boubellouta, T., Dufour, E. et al. Fluorescence Spectroscopy as a Promising Tool for a Polyphasic Approach to Pseudomonad Taxonomy. Curr Microbiol 58, 39–46 (2009). https://doi.org/10.1007/s00284-008-9263-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-008-9263-0

Keywords

Navigation