Skip to main content

Genetic and Bioinformatic Insights into Iron and Sulfur Oxidation Mechanisms of Bioleaching Organisms

  • Chapter
Biomining

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Acosta M, Beard S et al (2005) Identification of putative sulfurtransferase genes in the extremophilic Acidithiobacillus ferrooxidans ATCC23270 genome: structural and functional characterization of the proteins. OMICS 9:13–29.

    Article  CAS  PubMed  Google Scholar 

  • Appia-Ayme C (1998) Caractérisation d’un opéron codant pour sept proteins transporteurs d’électrons chez Thiobacillus ferrooxidans. Université de la Méditerranée, Aix-Marseille II.

    Google Scholar 

  • Appia-Ayme C, Guiliani N et al (1999) Characterization of an operon encoding two c-type cytochromes, an aa 3-type cytochrome oxidase, and rusticyanin in Thiobacillus ferrooxidans ATCC33020. Appl Environ Microbiol 65:4781–4787.

    CAS  PubMed  Google Scholar 

  • Barr DW, Ingledew WJ, Norris PR (1990) Respiratory chain components of iron-oxidizing, acidophilic bacteria. FEMS Microbiol Lett 70:85–90.

    Article  CAS  Google Scholar 

  • Bengrine A, Guiliani N et al (1995) Studies of the rusticyanin encoding gene of Thiobacillus ferrooxidans ATCC33020. In: Jerez CA, Vargas T, Toledo H, Wiertz J (eds) Biohydrometallurgical processing, vol 2. University of Chile, Santiago, pp 75–83.

    Google Scholar 

  • Bengrine A, Guiliani N et al (1998) Sequence and expression of the rusticyanin structural gene from Thiobacillus ferrooxidans ATCC33020 strain. Biochim Biophys Acta 1443:99–112.

    CAS  PubMed  Google Scholar 

  • Blake RC 2nd, Shute EA (1994) Respiratory enzymes of Thiobacillus ferrooxidans. Kinetic properties of an acid-stable iron:rusticyanin oxidoreductase. Biochemistry 33:9220–9228.

    Article  CAS  PubMed  Google Scholar 

  • Blake RC 2nd, Shute EA, Waskovsky J, Harrison AP Jr (1992) Respiratory components in acidophilic bacteria that respire on iron. Geomicrobiol J 10:173–192.

    Article  CAS  Google Scholar 

  • Blake RC 2nd, Shute EA et al (1993) Enzymes of aerobic respiration on iron. FEMS Microbiol Rev 11:9–18.

    Article  CAS  PubMed  Google Scholar 

  • Bonora P, Principi II et al (1999) On the role of high-potential iron-sulfur proteins and cytochromes in the respiratory chain of two facultative phototrophs. Biochim Biophys Acta 1410:51–60.

    Article  CAS  PubMed  Google Scholar 

  • Boon M, Brasser HJ, Hansford GS, Heijnen JJ (1999) Comparison of the oxidation kinetics of different pyrites in the presence of Thiobacillus ferrooxidans or Leptospirillum ferroxidans. Hydrometallurgy 53:57–72.

    Article  CAS  Google Scholar 

  • Brasseur G, Bruscella P et al (2002) The bc 1 complex of the iron-grown acidophilic chemolithotrophic bacterium Acidithiobacillus ferrooxidans functions in the reverse but not in the forward direction. Is there a second bc 1 complex? Biochim Biophys Acta 1555:37–43.

    Article  CAS  PubMed  Google Scholar 

  • Brasseur G, Levican G et al (2004) Apparent redundancy of electron transfer pathways via bc 1 complexes and terminal oxidases in the extremophilic chemolithoautotrophic Acidithiobacillus ferrooxidans. Biochim Biophys Acta 1656:114–126.

    Article  CAS  PubMed  Google Scholar 

  • Brock TD, Gustafson J (1976) Ferric iron reduction by sulfur- and iron-oxidizing bacteria. Appl Environ Microbiol 32:567–571.

    CAS  PubMed  Google Scholar 

  • Brown LD, Dennehy ME, Rawlings DE (1994) The F1 genes of the F1F0 ATP synthase from the acidophilic bacterium Acidithiobacillus ferrooxidans complement Escherichia coli F1 unc mutants. FEMS Microbiol Lett 122:19–26.

    Article  CAS  PubMed  Google Scholar 

  • Bruhn DF, Roberto FF (1993) Maintenance and expression of enteric arsenic resistance genes in Acidiphilium. In: Torma AE, Wey JE, Lakshmanan VI (eds) Biohydrometallurgical technologies, vol 2. The Minerals, Metals and Materials Society, Warrendale, pp 745–754.

    Google Scholar 

  • Bruscella P (2004) Etude des opérons petI et petII codant pour deux complexes bc 1 chez la bactérie acidophile chimioautotrophe stricte Acidithiobacillus ferrooxidans. Université de la Méditerranée, Aix-Marseille II.

    Google Scholar 

  • Bruscella P, Cassagnaud L et al (2005) The HiPIP from the acidophilic Acidithiobacillus ferrooxidans is correctly processed and translocated in Escherichia coli, in spite of the periplasm pH difference between these two microorganisms. Microbiology 151:1421–1431.

    Article  CAS  PubMed  Google Scholar 

  • Bruschi M, Cavazza C et al (1996) Biooxidation des minéraux sulfurés et dissolution de métaux par la bactérie acidophile: Thiobacillus ferrooxidans. Déchets 4:27–30.

    Google Scholar 

  • Cabrejos ME, Zhao HL et al (1999) IST1 insertional inactivation of the resB gene: implications for phenotypic switching in Thiobacillus ferrooxidans. FEMS Microbiol Lett 175:223–229.

    Article  CAS  PubMed  Google Scholar 

  • Casimiro DR, Toy-Palmer A et al (1995) Gene synthesis, high-level expression, and mutagenesis of Thiobacillus ferrooxidans rusticyanin: His 85 is a ligand to the blue copper center. Biochemistry 34:6640–6648.

    Article  CAS  PubMed  Google Scholar 

  • Cavazza C, Guigliarelli B et al (1995) Biochemical and EPR characterization of a high potential iron-sulfur protein in Thiobacillus ferrooxidans. FEMS Microbiol Lett 130:193–200.

    Article  CAS  Google Scholar 

  • Chen Y, Suzuki I (2005) Effects of electron transport uncouplers on the oxidation compounds interacting Acidithiobacillus ferrooxidans Can J Microbiol 51:695–703.

    Article  CAS  PubMed  Google Scholar 

  • Corbett CM, Ingledew WJ (1987) Is Fe3+/2+ cycling an intermediate in sulphur oxidation by Fe2+-grown Thiobacillus ferrooxidans. FEMS Microbiol Lett 41:1–6.

    Article  CAS  Google Scholar 

  • Cox JC, Boxer DH (1978) The purification and some properties of rusticyanin, a blue copper protein involved in iron(II) oxidation from Thiobacillus ferrooxidans. Biochem J 174:497–502.

    CAS  PubMed  Google Scholar 

  • Cox JC, Boxer DH (1986) The role of rusticyanin, a blue copper protein, in the electron transport chain of Thiobacillus ferrooxidans grown on iron or thiosulfate. Biotechnol Appl Biochem 8:269–275.

    CAS  Google Scholar 

  • Das A, Mishra AK et al (1992) Anaerobic growth on elemental sulfur using dissimilar iron reduction by autotrophic Thiobacillus ferrooxidans. FEMS Microbiol Lett 97:167–172.

    Article  CAS  Google Scholar 

  • De Jong GA, Hazeu W et al (1997) Polythionate degradation by tetrathionate hydrolase of Thiobacillus ferrooxidans. Microbiology 143:499–504.

    Article  CAS  Google Scholar 

  • Delgado M, Toledo H et al (1998) Molecular cloning, sequencing, and expression of a chemoreceptor gene from Leptospirillum ferrooxidans. Appl Environ Microbiol 64:2380–2385.

    CAS  PubMed  Google Scholar 

  • Demergasso CS, Galleguillos PA, Escudero LV, Zepeda VJ et al (2005) Molecular characterization of microbial populations in a low-grade copper ore bioleaching test heap. Hydrometallurgy 80:241–253.

    Article  CAS  Google Scholar 

  • Dopson M, Baker-Austin C, Bond PL (2005) Analysis of differential protein expression during growth states of Ferroplasma strains and insights into electron transport for iron oxidation. Microbiology 151;4127–4137.

    Article  CAS  PubMed  Google Scholar 

  • Elbehti A, Brasseur G et al (2000) First evidence for existence of an uphill electron transfer through the bc 1 and NADH-Q oxidoreductase complexes of the acidophilic obligate chemolithotrophic ferrous ion-oxidizing bacterium Thiobacillus ferrooxidans. J Bacteriol 182:3602–3606.

    Article  CAS  PubMed  Google Scholar 

  • Friedrich CG, Bardischewsky F et al (2005) Prokaryotic sulfur oxidation. Curr Opin Microbiol 8:253–259.

    Article  CAS  PubMed  Google Scholar 

  • Fukumori Y, Yano T et al (1988) FeII oxidizing enzyme purified from Thiobacillus ferrooxidans. FEMS Microbiol Lett 20:169–172.

    Article  Google Scholar 

  • Giudici-Orticoni MT, Leroy G et al (2000) Characterization of a new dihemic c 4-type cytochrome isolated from Thiobacillus ferrooxidans. Biochemistry 39:7205–7211.

    Article  CAS  PubMed  Google Scholar 

  • Giudici-Orticoni MT, Leroy G et al (2001) Two c-type cytochromes in Thiobacillus ferrooxidans: structure, comparison and functional role. In: Ciminelli VST, Garcia O Jr (eds) Biohydrometallurgy: fundamentals, technology and sustainable development, vol A. Elsevier, Amsterdam, pp 291–298.

    Google Scholar 

  • Glenn AW, Roberto FF et al (1992) Transformation of Acidiphilium by electroporation and conjugation. Can J Microbiol 38:387–393.

    CAS  PubMed  Google Scholar 

  • Golyshina OV, Timmis KN (2005) Ferroplasma and relatives, recently discovered cell wall-lacking archaea making a living in extremely acid, heavy metal-rich environments. Environ Microbiol 7:1277–1288.

    Article  CAS  PubMed  Google Scholar 

  • Griesbeck C, Hauska G et al (2000) Biological sulfide oxidation: sulfide-quinone reductase (SQR), the primary reaction. In: Pandalai SG (ed) Recent research developments in microbiology, vol 4. Research Signpost, Trivadrum, pp 179–203.

    Google Scholar 

  • Guiliani N, Bengrine A et al (1995) Genetics of Thiobacillus ferrooxidans: advancement and projects: sequence and analysis of the rus gene encoding rusticyanin and alaS encoding alanyl-tRNA-synthetase. In: Holmes D, Smith RW (eds.) Mineral bioprocessing, vol 2. The Minerals, Metals and Materials Society, Warrendale, pp 95–110.

    Google Scholar 

  • Hall JF, Hasnain SS et al (1996) The structural gene for rusticyanin from Thiobacillus ferrooxidans: cloning and sequencing of the rusticyanin gene. FEMS Microbiol Lett 137:85–89.

    Article  CAS  PubMed  Google Scholar 

  • Harahuc L, Lizama HM et al (2000) Selective inhibition of the oxidation of ferrous iron or sulfur in Thiobacillus ferrooxidans. Appl Environ Microbiol 66:1031–1037.

    Article  CAS  PubMed  Google Scholar 

  • Hiraishi A, Nagashima KV et al (1998) Phylogeny and photosynthetic features of Thiobacillus acidophilus and related acidophilic bacteria: its transfer to the genus Acidiphilium as Acidiphilium acidophilum comb. nov. Int J Syst Bacteriol 48:1389–1398.

    Article  CAS  PubMed  Google Scholar 

  • Holmes DS, Zhao HL et al (2001) ISAfe1, an ISL3 family insertion sequence from Acidithiobacillus ferrooxidans ATCC19859. J Bacteriol 183:4323–4329.

    Article  CAS  PubMed  Google Scholar 

  • Inagaki K, Tomono J et al (1993) Transformation of the acidophilic heterotroph Acidiphilium facilis by electroporation. Biosci Biotechnol Biochem 57:1770–1771.

    Article  CAS  PubMed  Google Scholar 

  • Ingledew WJ (1982) Thiobacillus ferrooxidans. The bioenergetics of an acidophilic chemoautotroph. Biochim Biophys Acta 683:89–117.

    CAS  PubMed  Google Scholar 

  • Ingledew WJ, Cobley JG (1980) A potentiometric and kinetic study on the respiratory chain of ferrous-iron-grown Thiobacillus ferrooxidans. Biochim Biophys Acta 590:141–158.

    Article  CAS  PubMed  Google Scholar 

  • Ingledew WJ, Cox JC et al (1977) A proposed mechanism for energy conservation during Fe2+ oxidation by Thiobacillus ferrooxidans: chemiosmotic coupling to net H+ influx. FEMS Microbiol Lett 2:193–197.

    Article  CAS  Google Scholar 

  • Jin SM, Yan WM et al (1992) Transfer of IncP plasmids to extremely acidophilic Thiobacillus thiooxidans. Appl Environ Microbiol 58:429–430.

    CAS  PubMed  Google Scholar 

  • Johnson DB, McGinness S (1991) Ferric iron reduction by acidophilic heterotrophic bacteria. Appl Environ Microbiol 57:207–211.

    CAS  PubMed  Google Scholar 

  • Kappler U, Sly LI, McEwan AG (2005) Respiratory gene clusters of Metallosphaera sedula– differential expression and transcriptional organization. Microbiology 151:35–43.

    Article  CAS  PubMed  Google Scholar 

  • Karavaiko GI, Bogdanova TI, Tourova TP, Kondrat’eva TF, Tsaplina IA, Egorova MA, Krasil’nikova EN, Zakharchuk LM (2005) Reclassification of ‘Sulfobacillus thermosulfidooxidans subsp. thermotolerans’ strain K1 as Alicyclobacillus tolerans sp. nov. and Sulfobacillus disulfidooxidans Dufresne et al. 1996 as Alicyclobacillus disulfidooxidans comb. nov., and emended description of the genus Alicyclobacillus. Int J Syst Evol Microbiol 55:941–947.

    Article  CAS  PubMed  Google Scholar 

  • Kino K, Usami S (1982) Biological reduction of ferric iron by iron- and sulfur-oxidizing bacteria. Agric Biol Chem 46:803–805.

    CAS  Google Scholar 

  • Kuenen JG, Pronk JT et al (1993) A review of bioenergetics and enzymology of sulfur compound oxidation by acidophilic thiobacilli. In: Torma AE, Apel ML, Brierley CL (eds) Biohydrometallurgical technologies, vol 2. The Minerals, Metals and Materials Society, Warrendale, pp 487–494.

    Google Scholar 

  • Kusano T, Sugawara K et al (1992a) Electrotransformation of Thiobacillus ferrooxidans with plasmids containing a mer determinant. J Bacteriol 174:6617–6623.

    CAS  PubMed  Google Scholar 

  • Kusano T, Takeshima T et al (1992b) Molecular cloning of the gene encoding Thiobacillus ferrooxidans FeII oxidase. High homology of the gene product with HiPIP. J Biol Chem 267:11242–11247.

    CAS  PubMed  Google Scholar 

  • Levican G, Bruscella P et al (2002) Characterization of the petI and res operons of Acidithiobacillus ferrooxidans. J Bacteriol 184:1498–1501.

    Article  CAS  PubMed  Google Scholar 

  • Liu Z, Guiliani N et al (2000) Construction and characterization of a recA mutant of Thiobacillus ferrooxidans by marker exchange mutagenesis. J Bacteriol 182:2269–2276.

    Article  CAS  PubMed  Google Scholar 

  • Liu Z, Borne F et al (2001a) Genetic transfer of IncP, IncQ and IncW plasmids to four Thiobacillus ferrooxidans strain by conjugation. Hydrometallurgy 59:339–345.

    Article  Google Scholar 

  • Liu Z, Guiliani N et al (2001b) Mutagenesis by reverse genetics of the acidophilic chemolithoautotrophic Acidithiobacillus ferrooxidans: construction of a recA mutant. In: Ciminelli VST, Garcia OJ (eds) Biohydrometallurgy: fundamentals, technology and sustainable development, vol A. Elsevier, Amsterdam, pp 489–498.

    Google Scholar 

  • Lorbach SC, Buonfiglio V et al (1993) Oxidation of reduced sulfur compounds by Thiobacillus ferrooxidans 23270 and Thiobacillus ferrooxidans FC. In: Torma AE, Apel ML, Brierley CL (eds) Biohydrometallurgical technologies. The Minerals, Metals and Materials Society, Warrendale, pp 443–452.

    Google Scholar 

  • Norris PR, Barr DW, Hinson D (1988) Iron and mineral oxidation by acidophilic bacteria: affinities for iron and attachment to pyrite. In: Norris PR, Kelly DP (eds) Biohydrometallurgy. Proceedings of the international symposium. Science and Technology Letters, Kew, pp 43–59.

    Google Scholar 

  • Ohmura N, Sasaki K et al (2002) Anaerobic respiration using Fe3+, S0, and H2 in the chemolithoautotrophic bacterium Acidithiobacillus ferrooxidans. J Bacteriol 184:2081–2087.

    Article  CAS  PubMed  Google Scholar 

  • Peng J, Yan W, Bao X (1994a) Expression of heterologous arsenic resistance genes in the obligately autotrophic biomining bacterium Thiobacillus ferrooxidans. Appl Environ Microbiol 60:2653–2656.

    CAS  PubMed  Google Scholar 

  • Peng JB, Yan W et al (1994b) Solid medium for the genetic manipulation of Thiobacillus ferrooxidans. J Gen Appl Microbiol 40:243–253.

    Article  CAS  Google Scholar 

  • Peng JB, Yan WM et al (1994c) Plasmid and transposon transfer to Thiobacillus ferrooxidans. J Bacteriol 176:2892–2897.

    CAS  PubMed  Google Scholar 

  • Pereira MM, JN Carita et al (1999) Membrane-bound electron transfer chain of the thermohalophilic bacterium Rhodothermus marinus: characterization of the iron-sulfur centers from the dehydrogenases and investigation of the high-potential iron-sulfur protein function by in vitro reconstitution of the respiratory chain. Biochemistry 38:1276–1283.

    Article  CAS  PubMed  Google Scholar 

  • Pronk JT, Meulenberg R et al (1990) Oxidation of reduced inorganic sulfur compounds by acidophilic thiobacilli. FEMS Microbiol Rev 75:293–306.

    Article  CAS  Google Scholar 

  • Pronk JT, Meijer WM et al (1991) Energy transduction by anaerobic ferric iron respiration in Thiobacillus ferrooxidans. Appl Environ Microbiol 57:2063–2068.

    CAS  PubMed  Google Scholar 

  • Pronk JT, De Bruyn JC et al (1992) Anaerobic growth of Thiobacillus ferrooxidans. Appl Environ Microbiol 58:2227–2230.

    CAS  PubMed  Google Scholar 

  • Pulgar V, Nunez L, Moreno F et al (1993) Expression of rusticyanin gene is regulated by growth condition in Thiobacillus ferrooxidans. In: Torma AE, Wey JE, Lakshmanan VI (eds) Biohydrometallurgical technologies, vol 2. The Minerals, Metals and Materials Society, Warrendale, pp 541–548.

    Google Scholar 

  • Quatrini R, Appia-Ayme C et al (2005a) Global analysis of the ferrous iron and sulfur energetic metabolism of Acidithiobacillus ferrooxidans by microarrays transcriptome profiling. In: Harrison STL, Rawlings DE, Petersen J (eds) 16th international biohydrometallurgy symposium proceedings, Cape Town, pp 761–771.

    Google Scholar 

  • Quatrini R, Jedlicki E, Holmes DS (2005b) Genomic insights into the iron uptake mechanisms of the biomining microorganism Acidithiobacillus ferrooxidans. J Ind Microbiol Biotechnol 32:606–614.

    Article  CAS  PubMed  Google Scholar 

  • Quentmeier A, Friedrich CG (1994) Transfer and expression of degradative and antibiotic resistance plasmids in acidophilic bacteria. Appl Environ Microbiol 60:973–978.

    CAS  PubMed  Google Scholar 

  • Ram RJ, VerBerkmoes NC et al (2005) Community proteomics of a natural microbial biofilm. Science 308:1915–1920.

    Article  CAS  PubMed  Google Scholar 

  • Ramirez P, Guiliani N et al (2004) Differential protein expression during growth of Acidithiobacillus ferrooxidans on ferrous iron, sulfur compounds, or metal sulfides. Appl Environ Microbiol 70:4491–4498.

    Article  CAS  PubMed  Google Scholar 

  • Rawlings DE (2005) Characteristics and adaptability of iron- and sulfur-oxidizing microorganisms used for the recovery of metals from minerals and their concentrates. Microb Cell Fact 4:13.

    Article  PubMed  CAS  Google Scholar 

  • Rawlings DE, Kusano T (1994) Molecular genetics of Thiobacillus ferrooxidans. Microbiol Rev 58:39–55.

    CAS  PubMed  Google Scholar 

  • Rawlings DE, Tributsch H, Hansford GS (1999) Reasons why ‘Leptospirillum’-like species rather than Thiobacillus ferrooxidans are the dominant iron-oxidizing bacteria in many commercial processes for the biooxidation of pyrite and related ores. Microbiology 145:5–13.

    Article  CAS  PubMed  Google Scholar 

  • Roberto FF, Glenn AW, Bulmer D, Ward TE (1991) Genetic transfer in acidophilic bacteria which are potentially applicable in coal beneficiation. Fuel 70:595–598.

    Article  CAS  Google Scholar 

  • Rohwerder T, Sand W (2003) The sulfane sulfur of persulfides is the actual substrate of the sulfur-oxidizing enzymes from Acidithiobacillus and Acidiphilium spp. Microbiology 149:1699–1710.

    Article  CAS  PubMed  Google Scholar 

  • Rohwerder T, Gehrke T, Kinzler K, Sand W (2003) Bioleaching review part A: progress in bioleaching: fundamentals and mechanisms of bacterial metal sulfide oxidation. Appl Microbiol Biotechnol 63:239–248.

    Article  CAS  PubMed  Google Scholar 

  • Sand W, Rohde K, Sobotke B, Zenneck C (1992) Evaluation of Leptospirillum ferrooxidans for leaching. Appl Environ Microbiol 58:85–92.

    CAS  PubMed  Google Scholar 

  • Silver M, Lundgren DG (1968a) Sulfur-oxidizing enzyme of Ferrobacillus ferrooxidans (Thiobacillus ferrooxidans). Can J Biochem 46:457–461.

    Article  CAS  PubMed  Google Scholar 

  • Silver M, Lundgren DG (1968b) The thiosulfate-oxidizing enzyme of Ferrobacillus ferrooxidans (Thiobacillus ferrooxidans). Can J Biochem 46:1215–1220.

    Article  CAS  PubMed  Google Scholar 

  • Sugio T, Domatsu C et al (1985) Role of a ferric ion-reducing system in sulfur oxidation of Thiobacillus ferrooxidans. Appl Environ Microbiol 49:1401–1406.

    CAS  PubMed  Google Scholar 

  • Sugio T, Mizunashi W et al (1987) Purification and some properties of sulfur:ferric ion oxidoreductase from Thiobacillus ferrooxidans. J Bacteriol 169:4916–4922.

    CAS  PubMed  Google Scholar 

  • Sugio T, Katagiri T et al (1988a) Existence of a new type of sulfite oxidase which utilizes ferric ions as an electron acceptor in Thiobacillus ferrooxidans. Appl Environ Microbiol 54:153–157.

    CAS  PubMed  Google Scholar 

  • Sugio T, Wada K et al (1988b) Synthesis of an iron-oxidizing system during growth of Thiobacillus ferrooxidans on sulfur-basal salts medium. Appl Environ Microbiol 54:150–152.

    CAS  PubMed  Google Scholar 

  • Sugio T, Katagiri T et al (1989) Actual substrate for elemental sulfur oxidation by sulfur:ferric ion oxidoreductase purified from Thiobacillus ferrooxidans. Biochim Biophys Acta 973:250–256.

    Article  CAS  Google Scholar 

  • Sugio T, Hirose T et al (1992a) Purification and some properties of sulfite:ferric ion oxidoreductase from Thiobacillus ferrooxidans. J Bacteriol 174:4189–4192.

    CAS  PubMed  Google Scholar 

  • Sugio T, White KJ et al (1992b) Existence of a hydrogen sulfide:ferric ion oxidoreductase in iron-oxidizing bacteria. Appl Environ Microbiol 58:431–433.

    CAS  PubMed  Google Scholar 

  • Tabita R, Silver M et al (1969) The rhodanese enzyme of Ferrobacillus ferrooxidans (Thiobacillus ferrooxidans). Can J Biochem 47:1141–1145.

    Article  CAS  PubMed  Google Scholar 

  • Tian KL, Lin JQ et al (2003) Conversion of an obligate autotrophic bacteria to heterotrophic growth: expression of a heterogeneous phosphofructokinase gene in the chemolithotroph Acidithiobacillus thiooxidans. Biotechnol Lett 25:749–54.

    Article  CAS  PubMed  Google Scholar 

  • Trumpower BL (1990) Cytochrome bc 1 complexes of microorganisms. Microbiol Rev 54:101–109.

    CAS  PubMed  Google Scholar 

  • Tyson GW, Chapman J et al (2004) Community structure and metabolism through reconstruction of microbial genomes from the environment. Nature 284:37–43.

    Article  CAS  Google Scholar 

  • Tyson GW, Lo I et al (2005) Genome-directed isolation of the key nitrogen fixer Leptospirillum ferrodiazotrophum sp. nov. from an acidophilic microbial community. Appl Environ Microbiol 71:6319–6324.

    Article  CAS  PubMed  Google Scholar 

  • Urich T, Bandeiras TM et al (2004) The sulphur oxygenase reductase from Acidianus ambivalens is a multimeric protein containing a low-potential mononuclear non-haem iron centre. Biochem J 381:137–146.

    Article  CAS  PubMed  Google Scholar 

  • Vestal JR, Lundgren DG (1971) The sulfite oxidase of Thiobacillus ferrooxidans (Ferrobacillus ferrooxidans). Can J Biochem 49:1125–1130.

    Article  CAS  PubMed  Google Scholar 

  • Wakai S, Kikumoto M, Kanao T, Kamimura K (2004). Involvement of sulfide:quinone oxidoreductase in sulfur oxidation of an acidophilic iron-oxidizing bacterium, Acidithiobacillus ferrooxidans NASF-1. Biosci Biotechnol Biochem 68:2519–2528.

    Article  CAS  PubMed  Google Scholar 

  • Ward TE, Bruhn DF et al (1993) Characterization of a new bacteriophage which infects bacteria of the genus Acidiphilium. J Gen Virol 74:2419–2425.

    Article  CAS  PubMed  Google Scholar 

  • Yamanaka T, Fukumori Y (1995) Molecular aspects of the electron transfer system which participates in the oxidation of ferrous ion by Thiobacillus ferrooxidans. FEMS Microbiol Rev 17:401–413.

    Article  CAS  PubMed  Google Scholar 

  • Yamanaka T, Yano T et al (1991) The electron transfer system in an acidophilic iron-oxidizing bacterium. In: Mukohata Y (ed) New era of bioenergetics. Academic, Tokyo, pp 223–246.

    Google Scholar 

  • Yarzabal A, Brasseur G et al (2002a) Cytochromes c of Acidithiobacillus ferrooxidans. FEMS Microbiol Lett 209:189–195.

    Article  CAS  PubMed  Google Scholar 

  • Yarzabal A, Brasseur G et al (2002b) The high-molecular-weight cytochrome c Cyc2 of Acidithiobacillus ferrooxidans is an outer membrane protein. J Bacteriol 184:313–317.

    Article  CAS  PubMed  Google Scholar 

  • Yarzabal A, Duquesne K, Bonnefoy V (2003) Rusticyanin gene expression of Acidithiobacillus ferrooxidans ATCC33020 in sulfur- and in ferrous iron-media. Hydrometallurgy 71:107–114.

    Article  CAS  Google Scholar 

  • Yarzabal A, Appia-Ayme C et al (2004) Regulation of the expression of the Acidithiobacillus ferrooxidans rus operon encoding two cytochromes c, a cytochrome oxidase and rusticyanin. Microbiology 150:2113–2123.

    Article  CAS  PubMed  Google Scholar 

  • Zhao HL, Holmes DS (1993) Insertion sequence IST1 and associated phenotypic switching in Thiobacillus ferrooxidans. In: Torma AE, Apel ML, Brierley CL (eds) Biohydrometallurgical technologies, vol 2. The Minerals, Metals and Materials Society, Warrendale, pp 667–671.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Holmes, D.S., Bonnefoy, V. (2007). Genetic and Bioinformatic Insights into Iron and Sulfur Oxidation Mechanisms of Bioleaching Organisms. In: Rawlings, D.E., Johnson, D.B. (eds) Biomining. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-34911-2_14

Download citation

Publish with us

Policies and ethics