Skip to main content

Advertisement

Log in

Diversity of Gut Bacteria of Reticulitermes flavipes as Examined by 16S rRNA Gene Sequencing and Amplified rDNA Restriction Analysis

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

The phylogenetic species richness of the bacteria in the gut of the termite Reticulitermes flavipes was examined using near full-length 16S rRNA gene sequencing and amplified rDNA restriction analysis (ARDRA). We amplified the genes by polymerase chain reaction (PCR) directly from a mixed population of termite gut bacteria and isolated them using cloning techniques. Sequence analysis of 42 clones identified a broad taxonomic range of ribotypes from six phyla within the domain Bacteria: Proteobacteria, Spirochaetes, Bacteroidetes, Firmicutes, Actinobacteria, and the recently proposed “Endomicrobia.” Analysis of the sequence data suggested the presence of a termite specific bacterial lineage within Bacteroidetes. The ARDRA data included 261 different ARDRA profiles of 512 clones analyzed. These data suggest the gut flora in R. flavipes is extremely diverse.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Altschul SF, Gish W, Miller W, et al. (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    PubMed  CAS  Google Scholar 

  2. Berchtold M, Konig H (1996) Phylogenetic analysis and in situ identification of uncultivated spirochetes from the hindgut of the termite Mastotermes darwiniensis. Syst Appl Microbiol 19:66–73

    Google Scholar 

  3. Breznak JA, Brill WJ, Mertins JW, et al. (1973) Nitrogen fixation in termites. Nature 244:577–580

    Article  PubMed  CAS  Google Scholar 

  4. Brosius J, Palmer ML, Kennedy PJ, et al. (1978) Complete nucleotide sequence of a 16S ribosomal RNA gene from Escherichia coli. Proc Natl Acad Sci U S A 75:4801–4805

    Article  PubMed  CAS  Google Scholar 

  5. Cole JR, Chai B, Farris RJ, et al. (2005) The Ribosomal Database Project (RDP-II): Sequences and tools for high-throughput rRNA analysis. Nucleic Acids Res 33:D294–D296

    Article  PubMed  CAS  Google Scholar 

  6. Curtis TP, Sloan WT, Scannell JW (2002) Estimating prokaryote diversity and its limits. Proc Natl Acad Sci U S A 99:10494–10499

    Article  PubMed  CAS  Google Scholar 

  7. French JR, Turner GL, Bradbury JF (1976) Nitrogen fixation by bacteria from the hindgut of termites. J Gen Microbiol 96:202–206

    PubMed  CAS  Google Scholar 

  8. Heck KL, Van Belle G, Simberloff D (1975) Explicit calculation of the rarefaction diversity measurement and the determination of sufficient sample size. Ecology 56:1459–1461

    Article  Google Scholar 

  9. Holland SM (2006) Analytic rarefaction user’s manual, version 1.3. University of Georgia, GA

    Google Scholar 

  10. Hongoh Y, Ohkuma M, Kudo T (2003) Molecular analysis of bacterial microbiota in the gut of the termite Reticulitermes speratus (Isoptera; Rhinotermitidae). FEMS Microbiol Ecol 44:231–242

    Article  CAS  Google Scholar 

  11. Hongoh Y, Deevong P, Inoue T, et al. (2005) Intra- and interspecific comparisons of bacterial diversity and community structure support coevolution of gut microbiota and termite host. Appl Environ Microbiol 71:6590–6599

    Article  PubMed  CAS  Google Scholar 

  12. Hongoh YP, Ekpornprasit L, Inoue T, et al. (2006) Intracolony variation of bacterial gut microbiota among castes and ages in the fungus-growing termite Macrotermes gilvus. Mol Ecol 15:505–516

    Article  PubMed  CAS  Google Scholar 

  13. Hugenholtz P, Goebel BM, Pace NR (1998) Impact of culture-independent studies on the emerging phylogenetic view of bacterial diversity. J Bacteriol 180:4765–4774

    PubMed  CAS  Google Scholar 

  14. Kudo T, Ohkuma M, Moriya S, et al. (1998) Molecular phylogenetic identification of the intestinal anaerobic microbial community in the hindgut of the termite, Reticulitermes speratus, without cultivation. Extremophiles 2:155–161

    Article  PubMed  CAS  Google Scholar 

  15. Kumar S, Tamura K, Jakobsen IB, et al. (2001) MEGA2: Molecular Evolutionary Genetics Analysis software. Bioinformatics 17:1244–1245

    Article  PubMed  CAS  Google Scholar 

  16. Leadbetter JR, Schmidt TM, Graber JR, et al. (1999) Acetogenesis from H2 plus CO2 by spirochetes from termite guts. Science 283:686–689

    Article  PubMed  CAS  Google Scholar 

  17. Noda S, Ohkuma M, Yamada A, et al. (2003) Phylogenetic position and in situ identification of ectosymbiotic spirochetes on protists in the termite gut. Appl Environ Microbiol 69:625–633

    Article  PubMed  CAS  Google Scholar 

  18. Noda S, Iida T, Kitade O, et al. (2005) Endosymbiotic Bacteroidales bacteria of the flagellated protist Pseudotrichonympha grassii in the gut of the termite Coptotermes formosanus. Appl Environ Microbiol 71:8811–8817

    Article  PubMed  CAS  Google Scholar 

  19. Noda S, Inoue T, Hongoh Y, et al. (2006) Identification and characterization of ectosymbionts of distinct lineages in Bacteroidales attached to flagellated protists in the gut of termites and a wood-feeding cockroach. Environ Microbiol 8:11–20

    Article  PubMed  CAS  Google Scholar 

  20. Ohkuma M, Iida T, Kudo T (1999) Phylogenetic relationships of symbiotic spirochetes in the gut of diverse termites. FEMS Microbiol Lett 181:123–129

    Article  PubMed  CAS  Google Scholar 

  21. Ohkuma M, Kudo T (1998) Phylogenetic analysis of the symbiotic intestinal microflora of the termite Cryptotermes domesticus. FEMS Microbiol Lett 164:389–395

    Article  CAS  Google Scholar 

  22. Ohkuma M, Kudo T (1996) Phylogenetic diversity of the intestinal bacterial community in the termite Reticulitermes speratus. Appl Environ Microbiol 62:461–468

    PubMed  CAS  Google Scholar 

  23. Osborn AM, Moore ER, Timmis KN (2000) An evaluation of terminal-restriction fragment length polymorphism (T-RFLP) analysis for the study of microbial community structure and dynamics. Environ Microbiol 2:39–50

    Article  PubMed  CAS  Google Scholar 

  24. Paster BJ, Dewhirst FE, Cooke SM, et al. (1996) Phylogeny of not-yet-cultured spirochetes from termite guts. Appl Environ Microbiol 62:347–352

    PubMed  CAS  Google Scholar 

  25. Potrikus CJ, Breznak JA (1977) Nitrogen-fixing Enterobacter agglomerans isolated from guts of wood-eating termites. Appl Environ Microbiol 33:392–399

    PubMed  CAS  Google Scholar 

  26. Schultz JE, Breznak JA (1978) Heterotrophic bacteria present in hindguts of wood-eating termites [Reticulitermes flavipes (Kollar)]. Appl Environ Microbiol 35:930–936

    PubMed  CAS  Google Scholar 

  27. Shinzato N, Muramatsu M, Matsui T, et al. (2005) Molecular phylogenetic diversity of the bacterial community in the gut of the termite Coptotermes formosanus. Biosci Biotechnol Biochem 69:1145–1155

    Article  PubMed  CAS  Google Scholar 

  28. Slaytor M (1992) Cellulose digestion in termites and cockroaches―What role do symbionts play? Comp Biochem Physiol B 103:775–784

    Article  Google Scholar 

  29. Stingl U, Radek R, Yang H, et al. (2005) “Endomicrobia”: Cytoplasmic symbionts of termite gut protozoa form a separate phylum of prokaryotes. Appl Environ Microbiol 71:1473–1479

    Article  PubMed  CAS  Google Scholar 

  30. Thompson JD, Higgins DG, Gibson TJ (1994) Clustal W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positions-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  PubMed  CAS  Google Scholar 

  31. To LP, Margulis L, Chase D, et al. (1980) The symbiotic microbial community of the Sonoran Desert termite: Pterotermes occidentis. Biosystems 13:109–137

    Article  PubMed  CAS  Google Scholar 

  32. Weidner S, Arnold W, Puhler A (1996) Diversity of uncultured microorganisms associated with the seagrass Halophila stipulacea estimated by restriction fragment length polymorphism analysis of PCR-amplified 16S rRNA genes. Appl Environ Microbiol 62:766–771

    PubMed  CAS  Google Scholar 

  33. Wenzel M, Radek R, Brugerolle G, et al. (2003) Identification of the ectosymbiotic bacteria of Mixotricha paradoxa involved in movement symbiosis. Eur J Protistol 39:11–23

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marc Fisher.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fisher, M., Miller, D., Brewster, C. et al. Diversity of Gut Bacteria of Reticulitermes flavipes as Examined by 16S rRNA Gene Sequencing and Amplified rDNA Restriction Analysis. Curr Microbiol 55, 254–259 (2007). https://doi.org/10.1007/s00284-007-0136-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-007-0136-8

Keywords

Navigation