Skip to main content
Log in

Cloning and Expression of an α-Amylase Gene from Phanerochaete chrysosporium

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Based on the genomic sequence and cDNA library screening, the cDNA sequence encoding an α-amylase was cloned from the filamentous white-rot fungus Phanerochaete chrysosporium and designated as pcamy1. Alignment results showed that the predicted protein has up to 43% amino acid homology to the known α-amylases in other organisms and is close to those from some filamentous fungi. Under nitrogen-starvation condition, the transcription of pcamy1 was accordingly upregulated or downregulated when soluble starch or glucose is sole carbon source. Addition of oxygen to nitrogen-limited media led to pcamy1 transcription and removal of glucose metabolic repression. The result indicated that the pcamy1 transcript was not only regulated by nutrients such as the carbon source but also by the cultivation environment, such as oxygen. This coordinate-regulatory model is likely common in P. chrysosporium. The expressed product of this gene in Escherichia coli could hydrolyze soluble starch, and its enzymatic activity was determined. As far as we know, this is the first report about cloning and expression study on the α-amylase in P. chrysosporium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

Literature Cited

  1. Belinky PA, Flikshtein N, Lechenko S, Gepstein S, Dosoretz CG (2003) Reactive oxygen species and induction of lignin peroxidase in Phanerochaete chrysosporium. Appl Envir Microbiol 69(11):6500–6506

    Article  CAS  Google Scholar 

  2. Birch PR (1998) Targeted differential display of abundantly expressed sequences from the basidiomycete Phanerochaete chrysosporium which contain regions coding for fungal cellulose-binding domains. Curr Genet 33(1):70–76

    Article  Google Scholar 

  3. Broda P, Birch PR, Brooks PR, Sims PF (1995) PCR-mediated analysis of lignocellulolytic gene transcription by Phanerochaete chrysosporium: Substrate-dependent differential expression within gene families. Appl Environ Microbiol 61(6):2358–2364

    PubMed  CAS  Google Scholar 

  4. Caltagirone A, Weiss G, Pantopoulos K (2001) Modulation of cellular iron metabolism by hydrogen peroxide. Effects of H2O2 on the expression and function of iron-responsive element-containing mrnas in b6 fibroblasts. J Biol Chem 276(23):19738–19745

    Article  PubMed  CAS  Google Scholar 

  5. Couee I, Sulmon C, Gouesbeg G, El Amrani A (2006) Involvement of soluble sugars in reactive oxygen species balance and responses to oxidative stress in plants. J Exp Bot 57(3):449–459

    Article  PubMed  CAS  Google Scholar 

  6. Da Lage JL, Feller G, Janecek S (2004) Horizontal gene transfer from eukarya to bacteria and domain shuffling: The alpha-amylase model. Cell Mol Life Sci 61(1):97–109

    Article  PubMed  CAS  Google Scholar 

  7. Doddapaneni H, Subramanian V, Yadav JS (2005) Physiological regulation, xenobiotic induction, and heterologous expression of p450 monooxygenase gene pc-3 (cyp63a3), a new member of the cyp63 gene cluster in the white-rot fungus Phanerochaete chrysosporium. Curr Microbiol 50(6):292–298

    Article  PubMed  CAS  Google Scholar 

  8. Doodapaneni H, Yadav JS (2004) Differential regulation and xenobiotic induction of tandem p450 monooxygenase genes pc-1 (cyp63a1) and pc-2 (cyp63a2) in the white-rot fungus Phanerochaete chrysosporium. Appl Microbiol Biotechnol 65(5):559–565

    Article  PubMed  CAS  Google Scholar 

  9. Fernando T, Bumpus JA, Aust SD (1990) Biodegradation of tnt (2,4,6-trinitrotoluene) by Phanerochaete chrysosporium. Appl Environ Microbiol 56(6):1666–1671

    PubMed  CAS  Google Scholar 

  10. Ferrara MA, Bon Ep, Araujo Neto JS (2002) Use of steam explosion liquor from sugar cane bagasse for liginin peroxidase production by Phanerochaete chrysosporium. Appl Biochem Biotechnol 98–100:289–300

    Article  PubMed  Google Scholar 

  11. Ganesh Kumar A, Sekaran G, Krishnamoorthy S (2006) Solid state fermentation of achras zapota lignocellulose by Phanerochaete chrysosporium. Bioresour Technol 97(13):1521–1528

    Article  PubMed  CAS  Google Scholar 

  12. Garreton V, Carpinelli J, Jordana X, Holuigue L (2002) The as-1 promoter element is an oxidative stress-responsive element and salicylic and activates it via oxidative species. Plant Physiol 130(3):1516–1526

    Article  PubMed  CAS  Google Scholar 

  13. Haseltine C, Rolfsmeier M, Blum P (1996) The glucose effect and regulation of alpha-amylase synthesis in the hyperthermophilic archaeon sulfolobus solfataricus. J Bacteriol 178(4):945–950

    PubMed  CAS  Google Scholar 

  14. Hickey DA, Benkel KI, Fong Y, Benkel BF (1994) A drosophila gene promoter is subject to glucose repression in yeast cells. PNAS 91(23):11109–11112

    Article  PubMed  CAS  Google Scholar 

  15. Ho S-L, Chao Y-C, Tong W-F, Yu S-M (2001) Sugar coordinately and differentially regulates growth-and stress-related gene expression via a complex signal transduction network and multiple control mechanisms. Plant Physiol 125(2):877–890

    Article  PubMed  CAS  Google Scholar 

  16. Li D, Alic M, Brown JA, Gold MH (1995) Regulation of manganese peroxidase gene transcription by hydrogen peroxide, chemical stress, and molecular oxygen. Apply Environ Microbiol 61(1):341–345

    PubMed  CAS  Google Scholar 

  17. Lu C-A, Ho T-hD, Ho S-L, Yu S-M (2002) Three novel myb proteins with one DNA binding repeat mediate sugar and hormone regulation of {alpha}-amylase gene expression. Plant Cell 14(8):1963–1980

    Article  PubMed  CAS  Google Scholar 

  18. Lu C-A, Lim E-K, Yu S-M (1998) Sugar response sequence in the promoter of a rice alpha-amylase gene serves as a transcriptional enhancer. J Biol Chem 273(17):10120–10131

    Article  PubMed  CAS  Google Scholar 

  19. Marone M, Mazzetti S, De Ritis D, Pierelli L, Scambia G (2001) Semiquantitative rt-pcr analysis to assess the expression levels of multiple transcripts from the same sample. Biol Proced Online 3:19–25

    Article  PubMed  CAS  Google Scholar 

  20. Martinez D, Larrondo LF, Putnam N, Gelpke MD, Huang K, Chapman J, et al. (2004) Genome sequence of the lignocellulose degrading fungus Phanerochaete chrysosporium strain rp78. Nat Biotechnol 22(6):695–700

    Article  PubMed  CAS  Google Scholar 

  21. Moye-Rowley WS (2003) Regulation of the transeriptional response to oxidative stress in fungi: Similarities and differences. Eukaryot Cell 2(3):381–389

    Article  PubMed  CAS  Google Scholar 

  22. Ngugen T, Sherratt PJ, Pickett CB (2003) Regulatory mechanisms controlling gene expression mediated by the antioxidant response element. Annu Rev Pharmacol Toxicol. 43:233–260

    Article  PubMed  CAS  Google Scholar 

  23. Rho D, Hodgson J, Thiboutot S, Ampleman G, Hawari J (2001) Transformation of 2,4,6-trinitrotoluene (tnt) by immobilized Phanerochaete chrysosporium under fed-batch and continuous tnt feeding conditions. Biotechnol Bioeng 73(4):271–281

    Article  PubMed  CAS  Google Scholar 

  24. Roldan-Carrillo T, Rodriguez-Varquez R, Diaz-Cervantes D, Vazquez-Torres H, Manzur-Guzman A, Torre-Dominguez A (2003) Starch-based plastic polymer degradation by the white rot fungus Phanerochaete chrysosporium grown on sugarcane bagasse pith: Enzyme production. Bioresour Technol 86(1):1–5

    Article  PubMed  CAS  Google Scholar 

  25. Sadhukhan R, Roy SK, Raha SK, Manna S, Chakrabarty SL (1992) Induction and regulation of alpha-amylase synthesis in a cellulolytic thermophilic fungus myceliophthora thermophila d14 (atcc 48104). Ind J Exp Biol 30(6):482–486

    CAS  Google Scholar 

  26. Sambrook J, Russel DW (2007) Molecular cloning: A laboratory manual, 3rd ed. New York NY: Cold Spring Harbor Laboratory Press

    Google Scholar 

  27. Schafer G, Cramer T, Suske G, Kemmner W, Wiedemann B, Hocker M (2003) Oxidative stress regulates vascular endothelial growth factor-a gene transcription through sp1-and sp3-dependent activation of two proximal gc-rich promoter elements. J Biol Chem 278(10):8190–8198

    Article  PubMed  CAS  Google Scholar 

  28. Silva A, Bacci M, Pagnocca FC, Bueno OC, Hebling MJ (2006) Starch metabolism in leucoagaricus gongylophorus, the symbiotic fungus of leaf-cutting ants. Microbiol Res 161(4):299–303

    Article  PubMed  CAS  Google Scholar 

  29. Snellinx Z, Nepovim A, Taghavi S, Vangronsveld J, Vanek T, van der Lelie D (2002) Biological remediation of explosives and related nitroaromatic compounds. Environ Sci Pollut Res Int 9(1):48–61

    Article  PubMed  CAS  Google Scholar 

  30. Storozhenko S, De Pauw P, Van Montagu M, Inze D, Kushnir S (1998) The heat-shock element is a functional component of the arabidopsis apxl gene promoter. Plant Physiol 118(3):1005–1014

    Article  PubMed  CAS  Google Scholar 

  31. Taniguchi Y, Taniguchi-Ueda Y, Mori K, Yodoi J (1996) A novel promoter sequence is involved in the oxidative stress-induced expressed of the adult t-cell leukemia-derived factor (adf)/human thioredoxin(trx) gene. Nucleic Acids Res 24(14):2746–2752

    Article  PubMed  CAS  Google Scholar 

  32. Thakkar AP, Dhamankar VS, Kapadnis BP (2006) Biocatalytic decolourisation of molasses by Phanerochaete chrysosporium. Bioresour Technol 97(12):1377–1381

    Article  PubMed  CAS  Google Scholar 

  33. Tsukamoto S, Morita S, Hirano E, Yokoi H, Masumura T, Tanaka K (2005) A novel cis-element that is responsive to oxidative stress regulates three antioxidant defense genes in rice Plant Physiol 137(1):317–327

    Article  PubMed  CAS  Google Scholar 

  34. Yoo HY, Chang MS, Rho HM (1999) The activation of the rat copper/zine superoxide dismutase gene by hydrogen peroxide through the hydrogen peroxide-responsive element and by paraquat and heat shock through the same heat shock element. J Biol Chem 274(34):23887–23892

    Article  PubMed  CAS  Google Scholar 

  35. Yoshida M, Igarashi K, Kawai R, Aida K, Samejima M (2004) Differential transcription of beta-glucosidase and cellobiose dehydrogenase genes in cellulose degradation by the basidiomycete Phanerochaete chrysosporium. FEMS Microbiol Lett 235(1):177–182

    PubMed  CAS  Google Scholar 

  36. Yoshida M, Igarashi K, Wada M, Kaneko S, Suzuki N, Matsumura H (2005) Characterization of carbohydrate-binding cytochrome b562 from the white-rot fungus Phanerochaete chrysosporium. Appl Environ Microbiol 71(8):4545–4555

    Article  PubMed  CAS  Google Scholar 

  37. Zacchi L, Burla G, Zuolong D, Harvey PJ (2000) Metabolism of cellulose by Phanerochaete chrysosporium in continuously agitated culture is associated with enhanced production of lignin peroxidase. J Biotechnol 78(2):185–192

    Article  PubMed  CAS  Google Scholar 

  38. Zhang YZ, Zylstra GJ, Oslen RH, Reddy CA (1986) Identification of cdna clones for ligmnase from Phanerochaete chrysosporium using synthetic ohgonucleotide probes. Biochem Biophys Res Commun 137(2):649–656

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Science of China (Grant No. 30470984). gpd primers are courtesy of M-F. Jiang, Southwest University of Nationalities. We also thank T. Zhang at the University of Electronic Science and Technology of China for drawing three-dimensional structures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi-Zheng Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, B., Hu, GK., Feng, H. et al. Cloning and Expression of an α-Amylase Gene from Phanerochaete chrysosporium . Curr Microbiol 55, 105–113 (2007). https://doi.org/10.1007/s00284-006-0600-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-006-0600-x

Keywords

Navigation