Skip to main content
Log in

Discovery of Bacillus thuringiensis Virulence Genes Using Signature-Tagged Mutagenesis in an Insect Model of Septicaemia

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Transposon Tn917 was used to identify Bacillus thuringiensis genes required for virulence and survival in a Manduca sexta (tobacco hornworm) septicaemia model. Uniquely tagged transposons, n = 72, were constructed and used to generate 1152 insertion mutants. Sixteen pools of 72 mutants were screened in the infection model, and 12 virulence-attenuated mutants were unable to survive the infection. Analysis of the mutated DNA sequences implicated an arsR family transcriptional regulator, a histone-like DNA-binding protein, a transposon, and several sequences of unknown function in B. thuringiensis pathogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Literature Cited

  1. Agaisse H, Gominet M, Økstad OA, Kolsto AB, Lereclus D (1999) PlcR is a pleiotropic regulator of extracellular virulence factor gene expression in Bacillus thuringiensis. Mol Microbiol 32:1043–1053

    Article  PubMed  CAS  Google Scholar 

  2. Autret N, Charbit A (2005) Lessons from signature-tagged mutagenesis on the infectious mechanisms of pathogenic bacteria. FEMS Microbiol Rev 29:703–717

    Article  PubMed  CAS  Google Scholar 

  3. Baum JA, Gilmer AJ, Light Mettus AM (1999) Multiple roles for TnpI recombinase in regulation of Tn5401 transposition in Bacillus thuringiensis. J Bacteriol 181:6271–6277

    PubMed  CAS  Google Scholar 

  4. Berry C, O’Neil S, Ben-Dov E, Jones AF, Murphy L, Quail MA, et al. (2002) Complete sequence and organization of pBtoxis, the toxin-coding plasmid of Bacillus thuringiensis subsp. israelensis. Appl Environ Microbiol 68:5082–5095

    Article  PubMed  CAS  Google Scholar 

  5. Coulter SN, Schwan WR, Ng EY, Langhorne MH, Ritchie HD, Westbrock-Wadman S, et al. (1998) Staphylococcus aureus genetic loci impacting growth and survival in multiple infection environments. Mol Microbiol 30:393–404

    Article  PubMed  CAS  Google Scholar 

  6. Darwin AJ, Miller VL (1999) Identification of Yersinia enterocolitica genes affecting survival in an animal host using signature-tagged transposon mutagenesis. Mol Microbiol 32:51–62

    Article  PubMed  CAS  Google Scholar 

  7. Drobniewski FA (1993) Bacillus cereus and related species. Clin Microbiol Rev 6:324–338

    PubMed  CAS  Google Scholar 

  8. Edlund T, Sidén I, Boman HG (1976) Evidence for two immune inhibitors from Bacillus thuringiensis interfering with the humoral defence system of saturniid pupae. Infect Immun 114:934–941

    Google Scholar 

  9. Fedhila S, Guillemet E, Nel P, Lereclus D (2004) Characterization of two Bacillus thuringiensis genes identified by in vivo screening of virulence factors. Appl Environ Microbiol 70:4784–4791

    Article  PubMed  CAS  Google Scholar 

  10. Fernández S, Rojo F, Alonso JC (1997) The Bacillus subtilis chromatin-associated protein Hbsu is involved in DNA repair and recombination. Mol Microbiol 23:1169–1179

    Article  PubMed  Google Scholar 

  11. Guttmann DM, Ellar DJ (2000) Phenotypic and genotypic comparisons of 23 strains from the Bacillus cereus complex for a selection of known and putative Bt virulence factors. FEMS Microbiol Lett 188:7–13

    Article  PubMed  CAS  Google Scholar 

  12. Hensel M, Shea JE, Gleeson C, Jones MD, Dalton E, Holden DW (1995) Simultaneous identification of bacterial virulence genes by negative selection. Science 269:400–403

    PubMed  CAS  Google Scholar 

  13. Hoffmaster AR, Koehler TM (1999) Autogenous regulation of the Bacillus anthracis pag operon. J Bacteriol 181:4485–4492

    PubMed  CAS  Google Scholar 

  14. Huisman O, Faelen M, Girard D, Jaffe A, Toussaint A, Rouviere-Yaniv J (1989) Multiple defects in Escherichia coli mutants lacking HU protein. J Bacteriol 171:3704–3712

    PubMed  CAS  Google Scholar 

  15. Jones AL, Knoll KM, Rubens CE (2000) Identification of Streptococcus agalactiae virulence genes in the neonatal rat sepsis model using signature-tagged mutagenesis. Mol Microbiol 37:1444–1455

    Article  PubMed  CAS  Google Scholar 

  16. Lereclus D, Agaisse H, Gominet M, Chaufaux J (1995) Overproduction of encapsulated insecticidal crystal proteins in a Bacillus thuringiensis spo0A mutant. Biotechnology (NY) 13:67–71

    Article  CAS  Google Scholar 

  17. Mahillon J, Lereclus D (1988) Structural and functional analysis of Tn4430: Identification of an integrase-like protein involved in the co-integrate-resolution process. EMBO J 7:1515–1526

    PubMed  CAS  Google Scholar 

  18. Mei J-M, Nourbakhsh F, Ford CW, Holden DW (1997) Identification of Staphylococcus aureus virulence genes in a murine model of bacteraemia using signature-tagged mutagensis. Mol Microbiol 26:399–407

    Article  PubMed  CAS  Google Scholar 

  19. Micka B, Marahiel MA (1992) The DNA-binding protein HBsu is essential for normal growth and development in Bacillus subtilis. Biochimie 74:641–650

    Article  PubMed  CAS  Google Scholar 

  20. Mignot T, Mock M, Fouet A (2003) A plasmid-encoded regulator couples the synthesis of toxins and surface structures in Bacillus anthracis. Mol Microbiol 47:917–927

    Article  PubMed  CAS  Google Scholar 

  21. Ogawa T, Wada M, Kano Y, Imamoto F, Okazaki T (1989) DNA replication in Escherichia coli mutants that lack protein HU. J Bacteriol 171:5672–5679

    PubMed  CAS  Google Scholar 

  22. Pospiech A, Neumann B (1995) A versatile quick-prep of genomic DNA from gram-positive bacteria. Trends Genet 11:217–218

    Article  PubMed  CAS  Google Scholar 

  23. Rasko DA, Altherr MR, Han CS, Ravel J (2005) Genomics of the Bacillus cereus group of organisms. FEMS Microbiol Rev 29:303–329

    Article  PubMed  CAS  Google Scholar 

  24. Salamitou S, Ramisse F, Brehelin M, Bourguet D, Gilois N, Gominet M, et al. (2000) The plcR regulon is involved in the opportunistic properties of Bacillus thuringiensis and Bacillus cereus in mice and insects. Microbiology 146:2825–2832

    PubMed  CAS  Google Scholar 

  25. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: A laboratory manual. 2nd ed. New York, NY, Cold Spring Harbour Press

    Google Scholar 

  26. Schnepf E, Crickmore N, Van Rie J, Lereclus D, Baum J, Feitelson J, et al. (1998) Bacillus thuringiensis and its pesticidal crystal proteins. Microbiol Mol Biol Rev 62:775–806

    PubMed  CAS  Google Scholar 

  27. Stewart GS, Johnstone K, Hagelberg E, Ellar DJ (1981) Commitment of bacterial spores to germinate: A measure of the trigger reaction. Biochem J 198:101–106

    PubMed  CAS  Google Scholar 

  28. Stinson MW, McLaughlin R, Choi SH, Juarez ZE, Barnard J (1998) Streptococcal histone-like protein: Primary structure of hlpA and protein binding to lipoteichoic acid and epithelial cells. Infect Immun 66:259–265

    PubMed  CAS  Google Scholar 

  29. Trieu-Cuot P, Courvalin P. (1983) Nucleotide sequence of the Streptococcus faecalis plasmid gene encoding the 3′5′′-aminoglycoside phosphotransferase type III. Gene 23:331–341

    Article  PubMed  CAS  Google Scholar 

  30. Turner AK, Lovell MA, Hulme SD, Zhang-Barber L, Barrow PA (1998) Identification of Salmonella typhimurium genes required for colonization of the chicken alimentary tract and for virulence in newly hatched chicks. Infect Immun 66:2099–2106

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Daniel Guttmann for providing protocols, David Holden for supplying pID408, Didier Lereclus for supplying pRN5101 and pDG783, and Jorge Ibarra for providing Bt MEX312. This project was funded by the BBSRC (Biotechnology and Biological Sciences Research Council).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinhong Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Steggles, J.R., Wang, J. & Ellar, D.J. Discovery of Bacillus thuringiensis Virulence Genes Using Signature-Tagged Mutagenesis in an Insect Model of Septicaemia. Curr Microbiol 53, 303–310 (2006). https://doi.org/10.1007/s00284-006-0037-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-006-0037-2

Keywords

Navigation