Skip to main content
Log in

Functionality of Tn916 in Paenibacillus larvae

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

The conjugative transposon Tn916 was determined to be functional in Paenibacillus larvae in regard to expression of tetracycline resistance and conjugative transfer. Expression of erythromycin resistance, using Tn916ΔE, was also observed. Conjugative transfer experiments employing Paenibacillus popilliae strains Tc1001 and Em1001 as transposon donors and experiments using different P. larvae subspecies or different transposon-containing strains demonstrated interspecies and intraspecies transfer occurred for Tn916 and Tn916ΔE. Southern hybridization analysis of several Tn916-containing P. larvae isolates showed that the transposon randomly inserted into the bacterial chromosome with an indication that hot spot insertion had occurred. Hybridization analysis indicated single-copy insertion of Tn916 into the genome predominated. However, selection of multiple-resistant isolates (i.e., isolates containing Tn916 and Tn916ΔE) demonstrated that multiple copies of the transposon could coexist in the bacterial genome. Growth of transposon-containing isolates in broth medium in the absence of selective antibiotic pressure showed that Tn916 and Tn916ΔE were stably maintained in the bacterium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Alippi AM, López AC, Aguilar OM (2002) Differentiation of Paenibacillus larvae subsp. larvae, the cause of American foulbrood of honey bees, by using PCR and restriction fragment analysis of genes encoding 16S rRNA. Appl Environ Microbiol 68:3655–3660

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alippi AM, León IE, López AC (2014) Tetracycline-resistance encoding plasmids from Paenibacillus larvae, the causal agent of American foulbrood disease, isolated from commercial honeys. Int Microbiol 17:49–61

    CAS  PubMed  Google Scholar 

  • Ausubel FM, Brent R, Kingston RE, Moore DD, Seidman JG, Smith JA, Struhl K (1989) Current protocols in molecular biology. Greene Publishing Associates and Wiley-Interscience, New York

    Google Scholar 

  • Bertram J, Strätz M, Dürre P (1991) Natural transfer of conjugative transposon Tn916 between gram-positive and gram-negative bacteria. J Bacteriol 173:443–448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Christie PJ, Korman RZ, Zahler SA, Adsit JC, Dunny GM (1987) Two conjugation systems associated with Streptococcus faecalis plasmid pCF10: identification of a conjugative transposon that transfers between S. faecalis and Bacillus subtilis. J Bacteriol 169:2529–2536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Connolly KM, Iwahara M, Clubb RT (2002) Xis protein binding to the left arm stimulates excision of conjugative transposon Tn916. J Bacteriol 184:2088–2099

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de Graaf DC, De Vos P, Heyndrickx M, Van Trappen S, Peiren N, Jacobs FJ (2006) Identification of Paenibacillus larvae to the subspecies level: an obstacle for AFB diagnosis. J Invertebr Pathol 91:115–123

    Article  PubMed  Google Scholar 

  • Descamps T, De Smet L, Stragier P, De Vos P, Graaf DC (2016) Multiple Locus Variable number of tandem repeat Analysis: a molecular genotyping tool for Paenibacillus larvae. Microb Biotechnol. doi:10.1111/1751-7915.12375

    PubMed  PubMed Central  Google Scholar 

  • Dingman DW (1999) Conjugative transposition of Tn916 and Tn925 in Bacillus popilliae. Can J Microbiol 45:530–535

    Article  CAS  Google Scholar 

  • Dingman DW (2012) Paenibacillus larvae 16S–23S rDNA intergenic transcribed spacer (ITS) regions: DNA fingerprinting and characterization. J Invertebr Pathol 110:352–358

    Article  CAS  PubMed  Google Scholar 

  • Dingman DW, Stahly DP (1983) Medium promoting sporulation of Bacillus larvae and metabolism of medium components. Appl Environ Microbiol 46:860–869

    CAS  PubMed  PubMed Central  Google Scholar 

  • Franke AE, Clewell DB (1981) Evidence for a chromosome-borne resistance transposon (Tn916) in Streptococcus faecalis that is capable of “conjugal” transfer in the absence of a conjugative plasmid. J Bacteriol 145:494–502

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fünfhaus A, Poppinga L, Genersch E (2013) Identification and characterization of two novel toxins expressed by the lethal honey bee pathogen Paenibacillus larvae, the causative agent of American foulbrood. Environ Microbiol 15:2951–2965

    PubMed  Google Scholar 

  • Garcia-Gonzalez E, Müller S, Ensle P, Süssmuth RD, Genersch E (2014a) Elucidation of sevadicin, a novel non-ribosomal peptide secondary metabolite produced by the honey bee pathogenic bacterium Paenibacillus larvae. Environ Microbiol 16:1297–1309

    Article  CAS  Google Scholar 

  • Garcia-Gonzalez E, Poppinga L, Fünfhaus A, Hertlein G, Hedtke K, Jakubowska A, Genersch E (2014b) Paenibacillus larvae chitin-degrading protein plcbp49 is a key virulence factor in American foulbrood of honey bees. PLoS Pathog 10:e1004284

    Article  PubMed  PubMed Central  Google Scholar 

  • Genersch E, Forsgren E, Pentikäinen J, Ashiralieva A, Rauch S, Kilwinski J, Fries I (2006) Reclassification of Paenibacillus larvae subsp. pulvifaciens and Paenibacillus larvae subsp. larvae as Paenibacillus larvae without subspecies differentiation. Int J Syst Evol Microbiol 56:501–511

    Article  CAS  PubMed  Google Scholar 

  • Goss WA, Deitz WH, Cook TM (1965) Mechanism of action of nalidixic acid on Escherichia coli II. Inhibition of deoxyribonucleic acid synthesis. J Bacteriol 89:1068–1074

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hayes F (2003) Transposon-based strategies for microbial functional genomics and proteomics. Annu Rev Genet 37:3–29

    Article  CAS  PubMed  Google Scholar 

  • Hertlein G, Müller S, Garcia-Gonzalez E, Poppinga L, Süssmuth RD, Genersch E (2014) Production of the catechol type siderophore bacillibactin by the honey bee pathogen Paenibacillus larvae. PLoS ONE 9:e108272

    Article  PubMed  PubMed Central  Google Scholar 

  • Heyndrickx M, Vandemeulebroecke K, Hoste B, Janssen P, Kersters K, De Vos P, Logan NA, Ali N, Berkeley RCW (1996) Reclassification of Paenibacillus (formerly Bacillus) pulvifaciens (Nakamura 1984) Ash et al. 1994, a later subjective synonym of Paenibacillus (formerly Bacillus) larvae (White 1906) Ash et al. 1994, as a subspecies of P. larvae, with emended descriptions of P. larvae as P. larvae subsp. larvae and P. larvae subsp. pulvifaciens. Int J Syst Evol Microbiol 46:270–279

    CAS  Google Scholar 

  • Holland J, Towner KJ, Williams P (1992) Tn916 insertion mutagenesis in Escherichia coli and Haemophilus influenzae type b following conjugative transfer. Microbiol 138:509–515

    CAS  Google Scholar 

  • Miller JH (1972) Experiments in molecular genetics. Cold Spring Harbor Laboratory, Cold Spring Harbor

    Google Scholar 

  • Morrissey BJ, Helgason T, Poppinga L, Fünfhaus A, Genersch E, Budge GE (2015) Biogeography of Paenibacillus larvae, the causative agent of American foulbrood, using a new multilocus sequence typing scheme. Environ Microbiol 17:1414–1424

    Article  CAS  PubMed  Google Scholar 

  • Murray KD, Aronstein KA (2006) Oxytetracycline-resistance in the honey bee pathogen Paenibacillus larvae is encoded on novel plasmid pMA67. J Apic Res 45:207–214

    Article  CAS  Google Scholar 

  • Murray KD, Aronstein KA (2008) Transformation of the Gram-positive honey bee pathogen, Paenibacillus larvae, by electroporation. J Microbiol Methods 75:325–328

    Article  CAS  PubMed  Google Scholar 

  • Naglich JG, Andrews RE (1988) Tn916-dependent conjugal transfer of pC194 and pUB110 from Bacillus subtilis into Bacillus thuringiensis subsp. israelensis. Plasmid 20:113–126

    Article  CAS  PubMed  Google Scholar 

  • Norgren MA, Caparon MG, Scott JR (1989) A method for allelic replacement that uses the conjugative transposon Tn916: deletion of the emm6. 1 allele in Streptococcus pyogenes JRS4. Infect Immun 57:3846–3850

    CAS  PubMed  PubMed Central  Google Scholar 

  • Poppinga L, Genersch E (2012) Heterologous expression of green fluorescent protein in Paenibacillus larvae, the causative agent of American Foulbrood of honey bees. J Appl Microbiol 112:430–435

    Article  CAS  PubMed  Google Scholar 

  • Poppinga L, Janesch B, Fünfhaus A, Sekot G, Garcia-Gonzalez E, Hertlein G, Hedtke K, Schäffer C, Genersch E (2012) Identification and functional analysis of the S-layer protein SplA of Paenibacillus larvae, the causative agent of American Foulbrood of honey bees. PLoS Pathog 8:e1002716

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reynaldi FJ, Alippi AM (2005) Optimization of the growth of Paenibacillus larvae in semi-selective media. Rev Argent Microbiol 38:69–72

    Google Scholar 

  • Roberts MC (1996) Tetracycline resistance determinants: mechanisms of action, regulation of expression, genetic mobility, and distribution. FEMS Microbiol Rev 19:1–24

    Article  CAS  PubMed  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  • Scott JR, Bringel F, Marra D, Alstine G, Rudy CK (1994) Conjugative transposition of Tn916: preferred targets and evidence for conjugative transfer of a single strand and for a double-stranded circular intermediate. Mol Microbiol 11:1099–1108

    Article  CAS  PubMed  Google Scholar 

  • van Opijnen T, Camilli A (2013) Transposon insertion sequencing: a new tool for systems-level analysis of microorganisms. Nat Rev Microbiol 11:435–442

    Article  PubMed  Google Scholar 

  • Walter MV, Porteous A, Seidler RJ (1987) Measuring genetic stability in bacteria of potential use in genetic engineering. Appl Environ Microbiol 53:105–109

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

I thank N. P. Schultes and Regan Huntley for technical assistance. This research was supported by Federal Hatch fund USDA CONH00254.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Douglas W. Dingman.

Additional information

Communicated by Erko Stackebrandt.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dingman, D.W. Functionality of Tn916 in Paenibacillus larvae . Arch Microbiol 199, 487–493 (2017). https://doi.org/10.1007/s00203-016-1321-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-016-1321-6

Keywords

Navigation