Skip to main content

Advertisement

Log in

Circadian rhythms in adaptive immunity and vaccination

  • Review
  • Published:
Seminars in Immunopathology Aims and scope Submit manuscript

Abstract

Adaptive immunity allows an organism to respond in a specific manner to pathogens and other non-self-agents. Also, cells of the adaptive immune system, such as T and B lymphocytes, can mediate a memory of an encounter with a pathogen, allowing a more efficient response to a future infection. As for other aspects of physiology and of the immune system, the adaptive immune system is regulated by circadian clocks. Consequently, the development, differentiation, and trafficking between tissues of adaptive immune cells have been shown to display daily rhythms. Also, the response of T cells to stimuli (e.g., antigen presentation to T cells by dendritic cells) varies according to a circadian rhythm, due to T cell-intrinsic mechanisms as well as cues from other tissues. The circadian control of adaptive immune response has implications for our understanding of the fight against pathogens as well as auto-immune diseases, but also for vaccination, a preventive measure based on the development of immune memory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Nobis CC, Labrecque N, Cermakian N (2018) From immune homeostasis to inflammation, a question of rhythms. Curr Opin Physio 5:90–98

    Article  Google Scholar 

  2. Duguay D, Cermakian N (2009) The crosstalk between physiology and circadian clock proteins. Chronobiol Int 26:1479–1513. https://doi.org/10.3109/07420520903497575

    Article  CAS  PubMed  Google Scholar 

  3. Fortier EE, Rooney J, Dardente H, Hardy MP, Labrecque N, Cermakian N (2011) Circadian variation of the response of T cells to antigen. J Immunol 187:6291–6300. https://doi.org/10.4049/jimmunol.1004030

    Article  CAS  PubMed  Google Scholar 

  4. Keller M, Mazuch J, Abraham U et al (2009) A circadian clock in macrophages controls inflammatory immune responses. Proc Natl Acad Sci U S A 106:21407–21412

    Article  CAS  Google Scholar 

  5. Silver AC, Arjona A, Hughes ME, Nitabach MN, Fikrig E (2012) Circadian expression of clock genes in mouse macrophages, dendritic cells, and B cells. Brain Behav Immun 26:407–413. https://doi.org/10.1016/j.bbi.2011.10.001

    Article  CAS  PubMed  Google Scholar 

  6. Druzd D, Matveeva O, Ince L et al (2017) Lymphocyte circadian clocks control lymph node trafficking and adaptive immune responses. Immunity 46:120–132. https://doi.org/10.1016/j.immuni.2016.12.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Hemmers S, Rudensky AY (2015) The cell-intrinsic circadian clock is dispensable for lymphocyte differentiation and function. Cell Rep 11:1339–1349. https://doi.org/10.1016/j.celrep.2015.04.058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Hand LE, Gray KJ, Dickson SH et al (2020) Regulatory T cells confer a circadian signature on inflammatory arthritis. Nat Commun 11:1658. https://doi.org/10.1038/s41467-020-15525-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Hopwood TW, Hall S, Begley N et al (2018) The circadian regulator BMAL1 programmes responses to parasitic worm infection via a dendritic cell clock. Sci Rep 8:3782. https://doi.org/10.1038/s41598-018-22021-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Nobis CC, Dubeau Laramee G, Kervezee L, Maurice De Sousa D, Labrecque N, Cermakian N (2019) The circadian clock of CD8 T cells modulates their early response to vaccination and the rhythmicity of related signaling pathways. Proc Natl Acad Sci U S A 116:20077–20086. https://doi.org/10.1073/pnas.1905080116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Bollinger T, Leutz A, Leliavski A et al (2011) Circadian clocks in mouse and human CD4+ T cells. PLoS ONE 6:e29801. https://doi.org/10.1371/journal.pone.0029801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Cuesta M, Boudreau P, Cermakian N, Boivin DB (2017) Rapid resetting of human peripheral clocks by phototherapy during simulated night shift work. Sci Rep 7:16310. https://doi.org/10.1038/s41598-017-16429-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Boivin DB, James FO, Wu A, Cho-Park PF, Xiong H, Sun ZS (2003) Circadian clock genes oscillate in human peripheral blood mononuclear cells. Blood 102:4143–4145

    Article  CAS  Google Scholar 

  14. Zhang R, Lahens NF, Ballance HI, Hughes ME, Hogenesch JB (2014) A circadian gene expression atlas in mammals: implications for biology and medicine. Proc Natl Acad Sci U S A 111:16219–16224. https://doi.org/10.1073/pnas.1408886111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Collins EJ, Cervantes-Silva MP, Timmons GA, O’Siorain JR, Curtis AM, Hurley JM (2021) Post-transcriptional circadian regulation in macrophages organizes temporally distinct immunometabolic states. Genome Res. https://doi.org/10.1101/gr.263814.120

    Article  PubMed  PubMed Central  Google Scholar 

  16. Depres-Brummer P, Bourin P, Pages N, Metzger G, Levi F (1997) Persistent T lymphocyte rhythms despite suppressed circadian clock outputs in rats. Am J Physiol 273:R1891-1899

    CAS  PubMed  Google Scholar 

  17. Kawate T, Abo T, Hinuma S, Kumagai K (1981) Studies of the bioperiodicity of the immune response. II. Co-variations of murine T and B cells and a role of corticosteroid. J Immunol 126:1364–1367

    CAS  PubMed  Google Scholar 

  18. Abo T, Kawate T, Itoh K, Kumagai K (1981) Studies on the bioperiodicity of the immune response. I. Circadian rhythms of human T, B, and K cell traffic in the peripheral blood. J Immunol 126:1360–1363

    CAS  PubMed  Google Scholar 

  19. Born J, Lange T, Hansen K, Molle M, Fehm HL (1997) Effects of sleep and circadian rhythm on human circulating immune cells. J Immunol 158:4454–4464

    CAS  PubMed  Google Scholar 

  20. Cuesta M, Boudreau P, Dubeau-Laramee G, Cermakian N, Boivin DB (2016) Simulated night shift disrupts circadian rhythms of immune functions in humans. J Immunol 196:2466–2475. https://doi.org/10.4049/jimmunol.1502422

    Article  CAS  PubMed  Google Scholar 

  21. Dimitrov S, Benedict C, Heutling D, Westermann J, Born J, Lange T (2009) Cortisol and epinephrine control opposing circadian rhythms in T cell subsets. Blood 113:5134–5143

    Article  CAS  Google Scholar 

  22. Kirsch S, Thijssen S, Alarcon Salvador S et al (2012) T-cell numbers and antigen-specific T-cell function follow different circadian rhythms. J Clin Immunol 32:1381–1389. https://doi.org/10.1007/s10875-012-9730-z

    Article  CAS  PubMed  Google Scholar 

  23. Miyawaki T, Taga K, Nagaoki T, Seki H, Suzuki Y, Taniguchi N (1984) Circadian changes of T lymphocyte subsets in human peripheral blood. Clin Exp Immunol 55:618–622

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Dimitrov S, Lange T, Nohroudi K, Born J (2007) Number and function of circulating human antigen presenting cells regulated by sleep. Sleep 30:401–411. https://doi.org/10.1093/sleep/30.4.401

    Article  PubMed  Google Scholar 

  25. Dijk DJ, Duffy JF, Czeisler CA (1992) Circadian and sleep/wake dependent aspects of subjective alertness and cognitive performance. J Sleep Res 1:112–117. https://doi.org/10.1111/j.1365-2869.1992.tb00021.x

    Article  CAS  PubMed  Google Scholar 

  26. Besedovsky L, Born J, Lange T (2014) Endogenous glucocorticoid receptor signaling drives rhythmic changes in human T-cell subset numbers and the expression of the chemokine receptor CXCR4. FASEB J 28:67–75. https://doi.org/10.1096/fj.13-237958

    Article  CAS  PubMed  Google Scholar 

  27. Shimba A, Cui G, Tani-Ichi S et al (2018) Glucocorticoids drive diurnal oscillations in T cell distribution and responses by inducing interleUkin-7 receptor and CXCR4. Immunity 48(286–298):e286. https://doi.org/10.1016/j.immuni.2018.01.004

    Article  CAS  Google Scholar 

  28. Suzuki K, Hayano Y, Nakai A, Furuta F, Noda M (2016) Adrenergic control of the adaptive immune response by diurnal lymphocyte recirculation through lymph nodes. J Exp Med 213:2567–2574. https://doi.org/10.1084/jem.20160723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Suzuki S, Toyabe S, Moroda T et al (1997) Circadian rhythm of leucocytes and lymphocytes subsets and its possible correlation with the function of the autonomic nervous system. Clin Exp Immunol 110:500–508. https://doi.org/10.1046/j.1365-2249.1997.4411460.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Sengupta S, Tang SY, Devine JC et al (2019) Circadian control of lung inflammation in influenza infection. Nat Commun 10:4107. https://doi.org/10.1038/s41467-019-11400-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Tavadia HB, Fleming KA, Hume PD, Simpson HW (1975) Circadian rhythmicity of human plasma cortisol and PHA-induced lymphocyte transformation. Clin Exp Immunol 22:190–193

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Esquifino AI, Alvarez MP, Cano P, Chacon F, Reyes Toso CF, Cardinali DP (2004) 24-hour pattern of circulating prolactin and growth hormone levels and submaxillary lymph node immune responses in growing male rats subjected to social isolation. Endocrine 25:41–48

    Article  CAS  Google Scholar 

  33. Esquifino AI, Selgas L, Arce A, Maggiore VD, Cardinali DP (1996) Twenty-four-hour rhythms in immune responses in rat submaxillary lymph nodes and spleen: effect of cyclosporine. Brain Behav Immun 10:92–102

    Article  CAS  Google Scholar 

  34. Kaplan MS, Byers VS, Levin AS, German DF, Fudenberg HH, Lecam LN (1976) Circadian rhythm of stimulated lymphocyte blastogenesis. A 24 hour cycle in the mixed leukocyte culture reaction and with SKSD stimulation. J Allergy Clin Immunol 58:180–189. https://doi.org/10.1016/0091-6749(76)90153-6

    Article  CAS  PubMed  Google Scholar 

  35. Hiemke C, Brunner R, Hammes E, Muller H, Meyerz um Buschenfelde KH, Lohse AW (1995) Circadian variations in antigen-specific proliferation of human T lymphocytes and correlation to cortisol production. Psychoneuroendocrinology 20:335–342

    Article  CAS  Google Scholar 

  36. Silver AC, Arjona A, Walker WE, Fikrig E (2012) The circadian clock controls toll-like receptor 9-mediated innate and adaptive immunity. Immunity 36:251–261. https://doi.org/10.1016/j.immuni.2011.12.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Nguyen KD, Fentress SJ, Qiu Y, Yun K, Cox JS, Chawla A (2013) Circadian gene Bmal1 regulates diurnal oscillations of Ly6C(hi) inflammatory monocytes. Science 341:1483–1488. https://doi.org/10.1126/science.1240636

    Article  CAS  PubMed  Google Scholar 

  38. Amir M, Campbell S, Kamenecka TM, Solt LA (2020) Pharmacological modulation and genetic deletion of REV-ERBalpha and REV-ERBbeta regulates dendritic cell development. Biochem Biophys Res Commun 527:1000–1007. https://doi.org/10.1016/j.bbrc.2020.05.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Holtkamp SJ, Ince LM, Barnoud C et al (2021) Circadian clocks guide dendritic cells into skin lymphatics. Nat Immunol. https://doi.org/10.1038/s41590-021-01040-x

    Article  PubMed  PubMed Central  Google Scholar 

  40. Tuganbaev T, Mor U, Bashiardes S et al (2020) Diet diurnally regulates small intestinal microbiome-epithelial-immune homeostasis and enteritis. Cell 182(1441–1459):e1421. https://doi.org/10.1016/j.cell.2020.08.027

    Article  CAS  Google Scholar 

  41. Sutton CE, Finlay CM, Raverdeau M et al (2017) Loss of the molecular clock in myeloid cells exacerbates T cell-mediated CNS autoimmune disease. Nat Commun 8:1923

    Article  Google Scholar 

  42. Yu X, Rollins D, Ruhn KA et al (2013) TH17 cell differentiation is regulated by the circadian clock. Science 342:727–730. https://doi.org/10.1126/science.1243884

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Male V, Nisoli I, Gascoyne DM, Brady HJ (2012) E4BP4: an unexpected player in the immune response. Trends Immunol 33:98–102. https://doi.org/10.1016/j.it.2011.10.002

    Article  CAS  PubMed  Google Scholar 

  44. Amir M, Chaudhari S, Wang R et al (2018) REV-ERBalpha regulates TH17 cell development and autoimmunity. Cell Rep 25(3733–3749):e3738. https://doi.org/10.1016/j.celrep.2018.11.101

    Article  CAS  Google Scholar 

  45. Chang C, Loo CS, Zhao X et al (2019) The nuclear receptor REV-ERBalpha modulates Th17 cell-mediated autoimmune disease. Proc Natl Acad Sci U S A 116:18528–18536. https://doi.org/10.1073/pnas.1907563116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Farez MF, Mascanfroni ID, Mendez-Huergo SP et al (2015) Melatonin contributes to the seasonality of multiple sclerosis relapses. Cell 162:1338–1352. https://doi.org/10.1016/j.cell.2015.08.025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Kennaway DJ (2019) Melatonin research in mice: a review. Chronobiol Int 36:1167–1183. https://doi.org/10.1080/07420528.2019.1624373

    Article  CAS  PubMed  Google Scholar 

  48. Hand LE, Hopwood TW, Dickson SH et al (2016) The circadian clock regulates inflammatory arthritis. FASEB J 30:3759–3770. https://doi.org/10.1096/fj.201600353R

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Hand LE, Dickson SH, Freemont AJ, Ray DW, Gibbs JE (2019) The circadian regulator Bmal1 in joint mesenchymal cells regulates both joint development and inflammatory arthritis. Arthritis Res Ther 21:5. https://doi.org/10.1186/s13075-018-1770-1

    Article  PubMed  PubMed Central  Google Scholar 

  50. Sun Y, Yang Z, Niu Z et al (2006) MOP3, a component of the molecular clock, regulates the development of B cells. Immunology

  51. Fernandes G, Halberg F, Yunis EJ, Good RA (1976) Circadian rhythmic plaque-forming cell response of spleens from mice immunized with SRBC. J Immunol 117:962–966

    CAS  PubMed  Google Scholar 

  52. Cao Q, Zhao X, Bai J et al (2017) Circadian clock cryptochrome proteins regulate autoimmunity. Proc Natl Acad Sci U S A 114:12548–12553. https://doi.org/10.1073/pnas.1619119114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Prentice S, Dockrell HM (2020) Antituberculosis BCG vaccination: more reasons for varying innate and adaptive immune responses. J Clin Invest 130:5121–5123. https://doi.org/10.1172/JCI141317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Langlois PH, Smolensky MH, Glezen WP, Keitel WA (1995) Diurnal variation in responses to influenza vaccine. Chronobiol Int 12:28–36. https://doi.org/10.3109/07420529509064497

    Article  CAS  PubMed  Google Scholar 

  55. Long JE, Drayson MT, Taylor AE, Toellner KM, Lord JM, Phillips AC (2016) Morning vaccination enhances antibody response over afternoon vaccination: a cluster-randomised trial. Vaccine 34:2679–2685. https://doi.org/10.1016/j.vaccine.2016.04.032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Phillips AC, Gallagher S, Carroll D, Drayson M (2008) Preliminary evidence that morning vaccination is associated with an enhanced antibody response in men. Psychophysiology 45:663–666. https://doi.org/10.1111/j.1469-8986.2008.00662.x

    Article  PubMed  Google Scholar 

  57. Karabay O, Temel A, Koker AG, Tokel M, Ceyhan M, Kocoglu E (2008) Influence of circadian rhythm on the efficacy of the hepatitis B vaccination. Vaccine 26:1143–1144. https://doi.org/10.1016/j.vaccine.2007.12.046

    Article  PubMed  Google Scholar 

  58. Gottlob S, Gille C, Poets CF (2019) Randomized controlled trial on the effects of morning versus evening primary vaccination on episodes of hypoxemia and bradycardia in very preterm infants. Neonatology 116:315–320. https://doi.org/10.1159/000501338

    Article  PubMed  Google Scholar 

  59. de Bree LCJ, Mourits VP, Koeken VA et al (2020) Circadian rhythm influences induction of trained immunity by BCG vaccination. J Clin Invest 130:5603–5617. https://doi.org/10.1172/JCI133934

    Article  PubMed  PubMed Central  Google Scholar 

  60. Lange T, Dimitrov S, Born J (2010) Effects of sleep and circadian rhythm on the human immune system. Ann N Y Acad Sci 1193:48–59. https://doi.org/10.1111/j.1749-6632.2009.05300.x

    Article  CAS  PubMed  Google Scholar 

  61. Benedict C, Cedernaes J (2021) Could a good night’s sleep improve COVID-19 vaccine efficacy? Lancet Respir Med 9:447–448. https://doi.org/10.1016/S2213-2600(21)00126-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Lange T, Dimitrov S, Bollinger T, Diekelmann S, Born J (2011) Sleep after vaccination boosts immunological memory. J Immunol 187:283–290. https://doi.org/10.4049/jimmunol.1100015

    Article  CAS  PubMed  Google Scholar 

  63. Lange T, Perras B, Fehm HL, Born J (2003) Sleep enhances the human antibody response to hepatitis A vaccination. Psychosom Med 65:831–835. https://doi.org/10.1097/01.psy.0000091382.61178.f1

    Article  PubMed  Google Scholar 

  64. Benedict C, Brytting M, Markstrom A, Broman JE, Schioth HB (2012) Acute sleep deprivation has no lasting effects on the human antibody titer response following a novel influenza A H1N1 virus vaccination. BMC Immunol 13:1. https://doi.org/10.1186/1471-2172-13-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Prather AA, Hall M, Fury JM, Ross DC, Muldoon MF, Cohen S, Marsland AL (2012) Sleep and antibody response to hepatitis B vaccination. Sleep 35:1063–1069. https://doi.org/10.5665/sleep.1990

    Article  PubMed  PubMed Central  Google Scholar 

  66. Bjorvatn B, Axelsson J, Pallesen S et al (2020) The association between shift work and immunological biomarkers in nurses. Front Public Health 8:415. https://doi.org/10.3389/fpubh.2020.00415

    Article  PubMed  PubMed Central  Google Scholar 

  67. Ruiz FS, Rosa DS, Zimberg IZ et al (2020) Night shift work and immune response to the meningococcal conjugate vaccine in healthy workers: a proof of concept study. Sleep Med 75:263–275. https://doi.org/10.1016/j.sleep.2020.05.032

    Article  PubMed  Google Scholar 

  68. Kervezee L, Kosmadopoulos A, Boivin DB (2020) Metabolic and cardiovascular consequences of shift work: the role of circadian disruption and sleep disturbances. Eur J Neurosci 51:396–412. https://doi.org/10.1111/ejn.14216

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank the members of the Cermakian and Labrecque laboratories for helpful discussions.

Funding

This work was supported by a grant from the Canadian Institutes of Health Research (PJT-168847). SKS was supported by an NSERC-CREATE award in Complex Dynamics.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolas Cermakian.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is a contribution to the special issue on: Chronoimmunology: from preclinical assessments to clinical applications - Guest Editors: Henrik Oster & David Ray

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cermakian, N., Stegeman, S.K., Tekade, K. et al. Circadian rhythms in adaptive immunity and vaccination. Semin Immunopathol 44, 193–207 (2022). https://doi.org/10.1007/s00281-021-00903-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00281-021-00903-7

Keywords

Navigation