Skip to main content

Advertisement

Log in

T-cell Numbers and Antigen-specific T-cell Function Follow Different Circadian Rhythms

  • Published:
Journal of Clinical Immunology Aims and scope Submit manuscript

Abstract

Purpose

Circadian rhythms play an important role in modulating cellular immune responses. The present study was performed to characterise circadian variations in lymphocyte numbers and antigen-specific T-cell functionality in healthy individuals under physiological conditions.

Methods

Blood leukocyte populations of six healthy volunteers were quantified over 24 h. In addition, antigen-specific T-cell functionality was analysed directly ex vivo from whole blood using flow cytometry based on intracellular cytokine induction after a 6-hour stimulation with adenovirus antigen and Staphylococcus aureus enterotoxin B (SEB), respectively.

Results

T-cell numbers and reactivity were stable during daytime, whereas a significant increase was observed during late evening and early morning hours. The percentage of T cells reacting towards adenovirus antigen and SEB showed a 1.76 ± 0.55-fold (p = 0.0002) and a 1.42 ± 0.33-fold (p = 0.0002) increase, respectively. Dynamics in T-cell reactivity were independent of the mode of antigen stimulation and inversely correlated with plasma levels of endogenous cortisol. Interestingly, peak frequencies of reactive T cells occurred late in the evening and did not directly coincide with peak numbers of bulk T cells that were observed in the early morning hours.

Conclusions

Taken together, our data reveal a circadian regulation of T-cell immune responses in the peripheral blood of humans under physiological conditions. This knowledge may be of practical consequence for the timing of blood sampling for functional T-cell assays as well as for immunosuppressive drug intake after organ transplantation, where T-cell function may be influenced not only by drug-mediated inhibition but also by circadian fluctuations in T-cell reactivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Kelly EA, Houtman JJ, Jarjour NN. Inflammatory changes associated with circadian variation in pulmonary function in subjects with mild asthma. Clin Exp Allergy. 2004;34(2):227–33.

    Article  PubMed  CAS  Google Scholar 

  2. Helena CV, McKee DT, Bertram R, Walker AM, Freeman ME. The rhythmic secretion of mating-induced prolactin secretion is controlled by prolactin acting centrally. Endocrinology. 2009;150(7):3245–51.

    Article  PubMed  CAS  Google Scholar 

  3. Gan EH, Quinton R. Physiological significance of the rhythmic secretion of hypothalamic and pituitary hormones. Prog Brain Res. 2010;181:111–26.

    Article  PubMed  CAS  Google Scholar 

  4. Kreiger DT. Rhythms in CRF, ACTH and crticosteroids. Endocrine rhythms. New York: Raven Press; 1979. p. 123–42.

    Google Scholar 

  5. Gala RR. Prolactin and growth hormone in the regulation of the immune system. Proc Soc Exp Biol Med. 1991;198(1):513–27.

    PubMed  CAS  Google Scholar 

  6. Abo T, Kawate T, Itoh K, Kumagai K. Studies on the bioperiodicity of the immune response. I. Circadian rhythms of human T, B, and K cell traffic in the peripheral blood. J Immunol. 1981;126(4):1360–3.

    PubMed  CAS  Google Scholar 

  7. Haimovich B, Calvano J, Haimovich AD, Calvano SE, Coyle SM, Lowry SF. In vivo endotoxin synchronizes and suppresses clock gene expression in human peripheral blood leukocytes. Crit Care Med. 2010;38(3):751–8.

    Article  PubMed  CAS  Google Scholar 

  8. Suzuki S, Toyabe S, Moroda T, Tada T, Tsukahara A, Iiai T, et al. Circadian rhythm of leucocytes and lymphocytes subsets and its possible correlation with the function of the autonomic nervous system. Clin Exp Immunol. 1997;110(3):500–8.

    Article  PubMed  CAS  Google Scholar 

  9. Lange T, Dimitrov S, Born J. Effects of sleep and circadian rhythm on the human immune system. Ann N Y Acad Sci. 2010;1193:48–59.

    Article  PubMed  CAS  Google Scholar 

  10. Born J, Lange T, Hansen K, Molle M, Fehm HL. Effects of sleep and circadian rhythm on human circulating immune cells. J Immunol. 1997;158(9):4454–64.

    PubMed  CAS  Google Scholar 

  11. Tornatore KM, Reed K, Venuto R. 24-hour immunologic assessment of CD4+ and CD8+ lymphocytes in renal transplant recipients receiving chronic methylprednisolone. Clin Nephrol. 1995;44(5):290–8.

    PubMed  CAS  Google Scholar 

  12. Dimitrov S, Benedict C, Heutling D, Westermann J, Born J, Lange T. Cortisol and epinephrine control opposing circadian rhythms in T cell subsets. Blood. 2009;113(21):5134–43.

    Article  PubMed  CAS  Google Scholar 

  13. Magee MH, Blum RA, Lates CD, Jusko WJ. Pharmacokinetic/pharmacodynamic model for prednisolone inhibition of whole blood lymphocyte proliferation. Br J Clin Pharmacol. 2002;53(5):474–84.

    Article  PubMed  CAS  Google Scholar 

  14. Kawate T, Abo T, Hinuma S, Kumagai K. Studies of the bioperiodicity of the immune response. II. Co-variations of murine T and B cells and a role of corticosteroid. J Immunol. 1981;126(4):1364–7.

    PubMed  CAS  Google Scholar 

  15. Bollinger T, Bollinger A, Skrum L, Dimitrov S, Lange T, Solbach W. Sleep-dependent activity of T cells and regulatory T cells. Clin Exp Immunol. 2009;155(2):231–8.

    Article  PubMed  CAS  Google Scholar 

  16. Sester M, Sester U, Alarcon Salvador S, Heine G, Lipfert S, Girndt M, et al. Age-related decrease in adenovirus-specific T cell responses. J Infect Dis. 2002;185(10):1379–87.

    Article  PubMed  Google Scholar 

  17. Bollinger T, Bollinger A, Naujoks J, Lange T, Solbach W. The influence of regulatory T cells and diurnal hormone rhythms on T helper cell activity. Immunology. 2010;131(4):488–500.

    Article  PubMed  CAS  Google Scholar 

  18. Fortier EE, Rooney J, Dardente H, Hardy MP, Labrecque N, Cermakian N. Circadian variation of the response of T cells to antigen. J Immunol. 2011;187(12):6291–300.

    Article  PubMed  CAS  Google Scholar 

  19. Kennaway DJ, Owens JA, Voultsios A, Varcoe TJ. Functional central rhythmicity and light entrainment, but not liver and muscle rhythmicity, are Clock independent. Am J Physiol Regul Integr Comp Physiol. 2006;291(4):R1172–80.

    Article  PubMed  CAS  Google Scholar 

  20. Oishi K, Ohkura N, Kadota K, Kasamatsu M, Shibusawa K, Matsuda J, et al. Clock mutation affects circadian regulation of circulating blood cells. J Circadian Rhythms. 2006;4:13.

    Article  PubMed  Google Scholar 

  21. Depres-Brummer P, Bourin P, Pages N, Metzger G, Levi F. Persistent T lymphocyte rhythms despite suppressed circadian clock outputs in rats. Am J Physiol. 1997;273(6 Pt 2):R1891–9.

    PubMed  CAS  Google Scholar 

  22. Silver AC, Arjona A, Hughes ME, Nitabach MN, Fikrig E. Circadian expression of clock genes in mouse macrophages, dendritic cells, and B cells. Brain Behav Immun. 2012;26(3):407–13.

    Article  PubMed  CAS  Google Scholar 

  23. Sester M, Gärtner BC, Sester U. Monitoring of CMV specific T-cell levels after organ transplantation. J Lab Med. 2008;32(3):121–30.

    CAS  Google Scholar 

  24. Mack U, Migliori GB, Sester M, Rieder HL, Ehlers S, Goletti D, et al. LTBI: latent tuberculosis infection or lasting immune responses to M. tuberculosis? A TBNET consensus statement. Eur Respir J. 2009;33(5):956–73.

    Article  PubMed  CAS  Google Scholar 

  25. Lange T, Dimitrov S, Bollinger T, Diekelmann S, Born J. Sleep after vaccination boosts immunological memory. J Immunol. 2011;187(1):283–90.

    Article  PubMed  CAS  Google Scholar 

  26. Bollinger T, Bollinger A, Oster H, Solbach W. Sleep, immunity, and circadian clocks: a mechanistic model. Gerontology. 2010;56(6):574–80.

    Article  PubMed  Google Scholar 

  27. Knapp MS, Pownall R. Lymphocytes are rhythmic: is this important? Br Med J (Clin Res Ed). 1984;289(6455):1328–30.

    Article  CAS  Google Scholar 

  28. Gaddameedhi S, Selby CP, Kaufmann WK, Smart RC, Sancar A. Control of skin cancer by the circadian rhythm. Proc Natl Acad Sci U S A. 2011;108(46):18790–5.

    Article  PubMed  CAS  Google Scholar 

  29. Cutolo M, Masi AT. Circadian rhythms and arthritis. Rheum Dis Clin North Am. 2005;31(1):115–29. ix-x.

    Article  PubMed  Google Scholar 

  30. Sutherland ER. Nocturnal asthma. J Allergy Clin Immunol. 2005;116(6):1179–86. quiz 87.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Candida Guckelmus for expert technical assistance, Dr. M. Erhard (Department of Gastroenterology, Saarland University) for help in performing cortisol analyses, and Dr. M. Enders (Labor Enders & Partners, Stuttgart, Germany) for performing serological analysis.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martina Sester.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kirsch, S., Thijssen, S., Alarcon Salvador, S. et al. T-cell Numbers and Antigen-specific T-cell Function Follow Different Circadian Rhythms. J Clin Immunol 32, 1381–1389 (2012). https://doi.org/10.1007/s10875-012-9730-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10875-012-9730-z

Keywords

Navigation