Skip to main content

Advertisement

Log in

Chronic low-grade inflammation in polycystic ovary syndrome: is there a (patho)-physiological role for interleukin-1?

  • Review
  • Published:
Seminars in Immunopathology Aims and scope Submit manuscript

Abstract

The polycystic ovary syndrome (PCOS) is a frequent endocrine disorder in women of reproductive age. Its main characteristics are the ovarian overproduction of androgens and ovulatory dysfunction which lead to severe symptoms such as hirsutism, acne, insulin resistance, and infertility. Despite the frequency and disease burden of PCOS, its underlying causes remain unknown, and no causal therapeutic options are available. In recent years, several studies have shown that women with PCOS present with chronic low-grade inflammation indicating an overactivity of the pro-inflammatory cytokine interleukin-1 (IL-1). We show here how IL-1 might affect the ovarian physiology and pathophysiology in animals and humans by reviewing experimental studies on ovarian IL-1 system gene expression and on the effects of exogenous IL-1 on ovarian functions. Although IL-1 ligands and receptors are expressed within the ovarian cells, IL-1 seems to negatively affect the delicate balance between the sex hormones and dominant follicle development, as well as fertility. Whether blockade of the IL-1 signaling leads to an improvement of PCOS-related hormonal abnormalities and symptoms remains to be elucidated in future interventional studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Stein IF, Leventhal ML (1935) Amenorrhea associated with bilateral polycystic ovaries. Am J Obstet Gynecol 29:181–191. https://doi.org/10.1016/S0002-9378(15)30642-6

    Article  Google Scholar 

  2. Azziz R, Woods KS, Reyna R, Key TJ, Knochenhauer ES, Yildiz BO (2004) The prevalence and features of the polycystic ovary syndrome in an unselected population. J Clin Endocrinol Metab 89:2745–2749. https://doi.org/10.1210/jc.2003-032046

    Article  CAS  PubMed  Google Scholar 

  3. Yildiz BO, Bozdag G, Yapici Z, Esinler I, Yarali H (2012) Prevalence, phenotype and cardiometabolic risk of polycystic ovary syndrome under different diagnostic criteria. Hum Reprod 27:3067–3073. https://doi.org/10.1093/humrep/des232

    Article  PubMed  Google Scholar 

  4. Azziz R, Marin C, Hoq L, Badamgarav E, Song P (2005) Health care-related economic burden of the polycystic ovary syndrome during the reproductive life span. J Clin Endocrinol Metab 90:4650–4658. https://doi.org/10.1210/jc.2005-0628

    Article  CAS  PubMed  Google Scholar 

  5. Duleba AJ, Dokras A (2012) Is PCOS an inflammatory process?, Is PCOS an inflammatory process?

  6. Erickson GF (2009) Follicle growth and development. Glob Libr Women’s Med. https://doi.org/10.3843/GLOWM.10289

  7. Oktay K, Briggs D, Gosden RG (1997) Ontogeny of follicle-stimulating hormone receptor gene expression in isolated human ovarian follicles 1. J Clin Endocrinol Metab 82:3748–3751. https://doi.org/10.1210/jcem.82.11.4346

    Article  CAS  PubMed  Google Scholar 

  8. Edwards RG (1974) Follicular fluid. J Reprod Fertil 37:189–219

    Article  CAS  PubMed  Google Scholar 

  9. Williams CJ, Erickson GF (2000) Morphology and physiology of the ovary. MDText.com, Inc.

  10. Stocco C (2008) Aromatase expression in the ovary: hormonal and molecular regulation. Steroids 73:473–487. https://doi.org/10.1016/j.steroids.2008.01.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Hussein MR (2005) Apoptosis in the ovary: molecular mechanisms. Hum Reprod Update 11:162–178. https://doi.org/10.1093/humupd/dmi001

    Article  CAS  PubMed  Google Scholar 

  12. Simpson ER (2004) Aromatase: biologic relevance of tissue-specific expression. Semin Reprod Med 22:11–23. https://doi.org/10.1055/s-2004-823023

    Article  CAS  PubMed  Google Scholar 

  13. Davis BJ, Lennard DE, Lee CA, Tiano HF, Morham SG, Wetsel WC, Langenbach R (1999) Anovulation in cyclooxygenase-2-deficient mice is restored by prostaglandin E 2 and interleukin-1β 1. Endocrinology 140:2685–2695. https://doi.org/10.1210/endo.140.6.6715

    Article  CAS  PubMed  Google Scholar 

  14. Athanasiou S, Bourne TH, Khalid A, Okokon EV, Crayford TJB, Hagström HG, Campbell S, Collins WP (1996) Effects of indomethacin on follicular structure, vascularity, and function over the periovulatory period in women. Fertil Steril 65:556–560

    Article  CAS  PubMed  Google Scholar 

  15. Salustri A, Camaioni A, Di Giacomo M et al (1999) Hyaluronan and proteoglycans in ovarian follicles. Hum Reprod Update 5:293–301

    Article  CAS  PubMed  Google Scholar 

  16. Andersen CY, Ezcurra D (2014) Human steroidogenesis: implications for controlled ovarian stimulation with exogenous gonadotropins

  17. Escobar-Morreale HF (2018) Polycystic ovary syndrome: definition, aetiology, diagnosis and treatment. Nat Rev Endocrinol 14:270–284. https://doi.org/10.1038/nrendo.2018.24

    Article  PubMed  Google Scholar 

  18. (2004) Revised 2003 consensus on diagnostic criteria and long-term health risks related to polycystic ovary syndrome. Fertil Steril 81:19–25. https://doi.org/10.1016/j.fertnstert.2003.10.004

  19. Azziz R, Carmina E, Dewailly D, Diamanti-Kandarakis E, Escobar-Morreale HF, Futterweit W, Janssen OE, Legro RS, Norman RJ, Taylor AE, Witchel SF (2009) The androgen excess and PCOS society criteria for the polycystic ovary syndrome: the complete task force report. Fertil Steril 91:456–488. https://doi.org/10.1016/j.fertnstert.2008.06.035

    Article  PubMed  Google Scholar 

  20. Joham AE, Ranasinha S, Zoungas S, Moran L, Teede HJ (2014) Gestational diabetes and type 2 diabetes in reproductive-aged women with polycystic ovary syndrome. J Clin Endocrinol Metab 99:E447–E452. https://doi.org/10.1210/jc.2013-2007

    Article  CAS  PubMed  Google Scholar 

  21. Ehrmann DA, Barnes RB, Rosenfield RL, Cavaghan MK, Imperial J (1999) Prevalence of impaired glucose tolerance and diabetes in women with polycystic ovary syndrome. Diabetes Care 22:141–146

    Article  CAS  PubMed  Google Scholar 

  22. Wild RA, Carmina E, Diamanti-Kandarakis E, Dokras A, Escobar-Morreale HF, Futterweit W, Lobo R, Norman RJ, Talbott E, Dumesic DA (2010) Assessment of cardiovascular risk and prevention of cardiovascular disease in women with the polycystic ovary syndrome: a consensus statement by the Androgen Excess and Polycystic Ovary Syndrome (AE-PCOS) Society. J Clin Endocrinol Metab 95:2038–2049. https://doi.org/10.1210/jc.2009-2724

    Article  CAS  PubMed  Google Scholar 

  23. Rosenfield RL, Ehrmann DA (2016) The pathogenesis of polycystic ovary syndrome (PCOS): the hypothesis of PCOS as functional ovarian hyperandrogenism revisited. Endocr Rev 37:467–520. https://doi.org/10.1210/er.2015-1104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Shorakae S, Teede H, de Courten B, Lambert G, Boyle J, Moran L (2015) The emerging role of chronic low-grade inflammation in the pathophysiology of polycystic ovary syndrome. Semin Reprod Med 33:257–269. https://doi.org/10.1055/s-0035-1556568

    Article  CAS  PubMed  Google Scholar 

  25. Radosh L (2009) Drug treatments for polycystic ovary syndrome. Am Fam Physician 79:671–676

    PubMed  Google Scholar 

  26. Conway G, Dewailly D, Diamanti-Kandarakis E, Escobar-Morreale HF, Franks S, Gambineri A, Kelestimur F, Macut D, Micic D, Pasquali R, Pfeifer M, Pignatelli D, Pugeat M, Yildiz BO, ESE PCOS Special Interest Group (2014) The polycystic ovary syndrome: a position statement from the European Society of Endocrinology. Eur J Endocrinol 171:P1–P29. https://doi.org/10.1530/EJE-14-0253

    Article  CAS  PubMed  Google Scholar 

  27. Teede HJ, Misso ML, Costello MF, Dokras A, Laven J, Moran L, Piltonen T, Norman RJ, Andersen M, Azziz R, Balen A, Baye E, Boyle J, Brennan L, Broekmans F, Dabadghao P, Devoto L, Dewailly D, Downes L, Fauser B, Franks S, Garad RM, Gibson-Helm M, Harrison C, Hart R, Hawkes R, Hirschberg A, Hoeger K, Hohmann F, Hutchison S, Joham A, Johnson L, Jordan C, Kulkarni J, Legro RS, Li R, Lujan M, Malhotra J, Mansfield D, Marsh K, McAllister V, Mocanu E, Mol BW, Ng E, Oberfield S, Ottey S, Peña A, Qiao J, Redman L, Rodgers R, Rombauts L, Romualdi D, Shah D, Speight J, Spritzer PM, Stener-Victorin E, Stepto N, Tapanainen JS, Tassone EC, Thangaratinam S, Thondan M, Tzeng CR, van der Spuy Z, Vanky E, Vogiatzi M, Wan A, Wijeyaratne C, Witchel S, Woolcock J, Yildiz BO (2018) Recommendations from the international evidence-based guideline for the assessment and management of polycystic ovary syndrome. Fertil Steril 110:364–379. https://doi.org/10.1016/J.FERTNSTERT.2018.05.004

    Article  PubMed  PubMed Central  Google Scholar 

  28. Dinarello CA (1996) Biologic basis for interleukin-1 in disease. Blood 87:2095–2147

    CAS  PubMed  Google Scholar 

  29. Sims JE, Smith DE (2010) The IL-1 family: regulators of immunity. Nat Rev Immunol 10:89–102. https://doi.org/10.1038/nri2691

    Article  CAS  PubMed  Google Scholar 

  30. Peters VA, Joesting JJ, Freund GG (2013) IL-1 receptor 2 (IL-1R2) and its role in immune regulation. Brain Behav Immun 32:1–8. https://doi.org/10.1016/j.bbi.2012.11.006

    Article  CAS  PubMed  Google Scholar 

  31. Simón C, Frances A, Piquette G, Polan ML (1994) Immunohistochemical localization of the Interleukin-1 system in the mouse ovary during follicular growth, ovulation, and luteinization1. Biol Reprod 50:449–457. https://doi.org/10.1095/biolreprod50.2.449

    Article  PubMed  Google Scholar 

  32. Hurwitz A, Ricciarelli E, Botero L, Rohan RM, Hernandez ER, Adashi EY (1991) Endocrine- and autocrine-mediated regulation of rat ovarian (theca-interstitial) interleukin-1beta gene expression: gonadotropin-dependent preovulatory acquisition. Endocrinology 129:3427–3429. https://doi.org/10.1210/endo-129-6-3427

    Article  CAS  PubMed  Google Scholar 

  33. Kol S, Ruutiainen-Altman K, Scherzer WJ, Ben-Shlomo I, Ando M, Rohan RM, Adashi EY (1999) The rat intraovarian interleukin (IL)-1 system: cellular localization, cyclic variation and hormonal regulation of IL-1beta and of the type I and type II IL-1 receptors. Mol Cell Endocrinol 149:115–128

    Article  CAS  PubMed  Google Scholar 

  34. Wang LJ, Brännström M, Cui KH, Simula AP, Hart RP, Maddocks S, Norman RJ (1997) Localisation of mRNA for interleukin-1 receptor and interleukin-1 receptor antagonist in the rat ovary. J Endocrinol 152:11–17

    Article  CAS  PubMed  Google Scholar 

  35. Scherzer WJ, Ruutiainen-Altman KS, Putowski LT, Kol S, Adashi EY, Rohan RM (1996) Detection and in vivo hormonal regulation of rat ovarian type I and type II interleukin-I receptor mRNAs: increased expression during the periovulatory period. J Soc Gynecol Investig 3:131–139

    CAS  PubMed  Google Scholar 

  36. Uri-Belapolsky S, Shaish A, Eliyahu E, Grossman H, Levi M, Chuderland D, Ninio-Many L, Hasky N, Shashar D, Almog T, Kandel-Kfir M, Harats D, Shalgi R, Kamari Y (2014) Interleukin-1 deficiency prolongs ovarian lifespan in mice. Proc Natl Acad Sci 111:12492–12497. https://doi.org/10.1073/pnas.1323955111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Brännström M, Norman RJ, Seamark RF, Robertson SA (1994) Rat ovary produces cytokines during ovulation. Biol Reprod 50:88–94

    Article  PubMed  Google Scholar 

  38. Martoriati A, Lalmanach A-C, Goudet G, Gérard N (2002) Expression of interleukin-1 (IL-1) system genes in equine cumulus-oocyte complexes and influence of IL-1beta during in vitro maturation. Biol Reprod 67:630–636

    Article  CAS  PubMed  Google Scholar 

  39. Martoriati A, Gérard N (2003) Interleukin-1 (IL-1) system gene expression in granulosa cells: kinetics during terminal preovulatory follicle maturation in the mare. Reprod Biol Endocrinol 1:42. https://doi.org/10.1186/1477-7827-1-42

    Article  PubMed  PubMed Central  Google Scholar 

  40. Hurwitz A, Loukides J, Ricciarelli E, Botero L, Katz E, McAllister JM, Garcia JE, Rohan R, Adashi EY, Hernandez ER (1992) Human intraovarian interleukin-1 (IL-1) system: highly compartmentalized and hormonally dependent regulation of the genes encoding IL-1, its receptor, and its receptor antagonist. J Clin Invest 89:1746–1754. https://doi.org/10.1172/JCI115777

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Barak V, Yanai P, Treves AJ, Roisman I, Simon A, Laufer N (1992) Interleukin-1: local production and modulation of human granulosa luteal cells steroidogenesis. Fertil Steril 58:719–725

    Article  CAS  PubMed  Google Scholar 

  42. Khan SA, Schmidt K, Hallin P, di Pauli R, de Geyter C, Nieschlag E (1988) Human testis cytosol and ovarian follicular fluid contain high amounts of interleukin-1-like factor(s). Mol Cell Endocrinol 58:221–230

    Article  CAS  PubMed  Google Scholar 

  43. Piquette GN, Simón C, el Danasouri I, Frances A, Polan ML (1994) Gene regulation of interleukin-1 beta, interleukin-1 receptor type I, and plasminogen activator inhibitor-1 and -2 in human granulosa-luteal cells. Fertil Steril 62:760–770

    Article  CAS  PubMed  Google Scholar 

  44. De Los Santos MJ, Anderson DJ, Racowsky C et al (1998) Expression of interleukin-1. System Genes in Human Gametes 1

  45. Nakamura Y, Kato H, Terranova PF (1990) Interleukin-1 alpha increases thecal progesterone production of preovulatory follicles in cyclic hamsters. Biol Reprod 43:169–173

    Article  CAS  PubMed  Google Scholar 

  46. Brännström M, Wang L, Norman RJ (1993) Effects of cytokines on prostaglandin production and steroidogenesis of incubated preovulatory follicles of the rat. Biol Reprod 48:165–171

    Article  PubMed  Google Scholar 

  47. Baratta M, Basini G, Bussolati S, Tamanini C (1996) Effects of interleukin-1 beta fragment (163-171) on progesterone and estradiol-17 beta release by bovine granulosa cells from different size follicles. Regul Pept 67:187–194. https://doi.org/10.1016/S0167-0115(96)00123-1

    Article  CAS  PubMed  Google Scholar 

  48. Gottschall PE, Katsuura G, Arimura A (1989) Interleukin-1 suppresses follicle-stimulating hormone-induced estradiol secretion from cultured ovarian granulosa cells. J Reprod Immunol 15:281–290

    Article  CAS  PubMed  Google Scholar 

  49. Kasson BG, Gorospe WC (1989) Effects of interleukins 1, 2 and 3 on follicle-stimulating hormone-induced differentiation of rat granulosa cells. Mol Cell Endocrinol 62:103–111. https://doi.org/10.1016/0303-7207(89)90118-4

    Article  CAS  PubMed  Google Scholar 

  50. Tobai H, Nishiya I (2001) Nitric oxide mediates inhibitory effect of interleukin-1beta on estrogen production in human granulosa-luteal cells. J Obstet Gynaecol Res 27:53–59

    Article  CAS  PubMed  Google Scholar 

  51. Peterson CM, Hales HA, Hatasaka HH, Mitchell MD, Rittenhouse L, Jones KP (1993) Interleukin-1 beta (IL-1 beta) modulates prostaglandin production and the natural IL-1 receptor antagonist inhibits ovulation in the optimally stimulated rat ovarian perfusion model. Endocrinology 133:2301–2306. https://doi.org/10.1210/endo.133.5.7691586

    Article  CAS  PubMed  Google Scholar 

  52. Brännström M, Wang L, Norman RJ (1993) Ovulatory effect of interleukin-1 beta on the perfused rat ovary. Endocrinology 132:399–404. https://doi.org/10.1210/endo.132.1.8419137

    Article  PubMed  Google Scholar 

  53. Chun SY, Eisenhauer KM, Kubo M, Hsueh AJ (1995) Interleukin-1 beta suppresses apoptosis in rat ovarian follicles by increasing nitric oxide production. Endocrinology 136:3120–3127. https://doi.org/10.1210/endo.136.7.7540548

    Article  CAS  PubMed  Google Scholar 

  54. Acosta TJ, Miyamoto A, Ozawa T, Wijayagunawardane MPB, Sato K (1998) Local release of steroid hormones, prostaglandin E2, and endothelin-1 from bovine mature follicles in vitro: effects of luteinizing hormone, endothelin-1, and cytokines. Biol Reprod 59:437–443

    Article  CAS  PubMed  Google Scholar 

  55. Dang X, Zhu Q, He Y, Wang Y, Lu Y, Li X, Qi J, Wu H, Sun Y (2017) IL-1β upregulates StAR and progesterone production through the ERK1/2- and p38-mediated CREB signaling pathways in human granulosa-lutein cells. Endocrinology 158:3281–3291. https://doi.org/10.1210/en.2017-00029

    Article  PubMed  Google Scholar 

  56. Miceli F, Tropea A, Minici F, Navarra P, Lanzone A, Apa R (2003) Interleukin-1β stimulates progesterone production by in vitro human luteal cells: evidence of a mediatory role of prostaglandins. J Clin Endocrinol Metab 88:2690–2694. https://doi.org/10.1210/jc.2002-020819

    Article  CAS  PubMed  Google Scholar 

  57. Sjögren A, Holmes PV, Hillensjö T (1991) Interleukin-1 alpha modulates luteinizing hormone stimulated cyclic AMP and progesterone release from human granulosa cells in vitro. Hum Reprod 6:910–913

    Article  PubMed  Google Scholar 

  58. Gottschall PE, Uehara A, Hoffmann ST, Arimura A (1987) Interleukin-1 inhibits follicle stimulating hormone-induced differentiation in rat granulosa cells in vitro. Biochem Biophys Res Commun 149:502–509. https://doi.org/10.1016/0006-291X(87)90396-2

    Article  CAS  PubMed  Google Scholar 

  59. Gottschall PE, Katsuura G, Dahl RR, Hoffmann ST, Arimura A (1988) Discordance in the effects of interleukin-1 on rat granulosa cell differentiation induced by follicle-stimulating hormone or activators of adenylate cyclase. Biol Reprod 39:1074–1085

    Article  CAS  PubMed  Google Scholar 

  60. Bréard E, Delarue B, Benhaïm A et al (1998) Inhibition by gonadotropins of interleukin-1 production by rabbit granulosa and theca cells: effects on gonadotropin-induced progesterone production. Eur J Endocrinol 138:328–336

    Article  PubMed  Google Scholar 

  61. Yasuda K, Fukuoka M, Taii S, Takakura K, Mori T (1990) Inhibitory effects of interleukin-1 on follicle-stimulating hormone induction of aromatase activity, progesterone secretion, and functional luteinizing hormone receptors in cultures of porcine granulosa cells. Biol Reprod 43:905–912

    Article  CAS  PubMed  Google Scholar 

  62. Fukuoka M, Mori T, Taii S, Yasuda K (1988) Interleukin-1 inhibits luteinization of porcine granulosa cells in culture. Endocrinology 122:367–369. https://doi.org/10.1210/endo-122-1-367

    Article  CAS  PubMed  Google Scholar 

  63. Fukuoka M, Yasuda K, Taii S et al (1989) Interleukin-1 stimulates growth and inhibits progesterone secretion in cultures of porcine granulosa cells*. Endocrinology 124:884–890. https://doi.org/10.1210/endo-124-2-884

    Article  CAS  PubMed  Google Scholar 

  64. Caillaud M, Gérard N (2009) In vivo and in vitro effects of interleukin-1beta on equine oocyte maturation and on steroidogenesis and prostaglandin synthesis in granulosa and cumulus cells. Reprod Fertil Dev 21:265–73

  65. Ghersevich S, Isomaa V, Vihko P (2001) Cytokine regulation of the expression of estrogenic biosynthetic enzymes in cultured rat granulosa cells. Mol Cell Endocrinol 172:21–30

    Article  CAS  PubMed  Google Scholar 

  66. Uri-Belapolsky S, Miller I, Shaish A, Levi M, Harats D, Ninio-Many L, Kamari Y, Shalgi R (2017) Interleukin 1-alpha deficiency increases the expression of follicle-stimulating hormone receptors in granulosa cells. Mol Reprod Dev 84:460–467. https://doi.org/10.1002/mrd.22799

    Article  CAS  PubMed  Google Scholar 

  67. Gottschall PE, Katsuura G, Hoffmann ST, Arimura A (1988) Interleukin 1: an inhibitor of luteinizing hormone receptor formation in cultured rat granulosa cells. FASEB J 2:2492–2496

    Article  CAS  PubMed  Google Scholar 

  68. Martoriati A, Duchamp G, Gérard N (2003) In vivo effect of epidermal growth factor, interleukin-1β, and interleukin-1RA on equine preovulatory follicles1. Biol Reprod 68:1748–1754. https://doi.org/10.1095/biolreprod.102.012138

    Article  CAS  PubMed  Google Scholar 

  69. Caillaud M, Duchamp G, Gérard N (2005) In vivo effect of interleukin-1beta and interleukin-1RA on oocyte cytoplasmic maturation, ovulation, and early embryonic development in the mare. Reprod Biol Endocrinol 3:26. https://doi.org/10.1186/1477-7827-3-26

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Takehara Y, Dharmarajan AM, Kaufman G, Wallach EE (1994) Effect of interleukin-1 beta on ovulation in the in vitro perfused rabbit ovary. Endocrinology 134:1788–1793. https://doi.org/10.1210/endo.134.4.8137743

    Article  CAS  PubMed  Google Scholar 

  71. Nothnick WB, Pate JL (1990) Interleukin-1 beta is a potent stimulator of prostaglandin synthesis in bovine luteal cells. Biol Reprod 43:898–903

    Article  CAS  PubMed  Google Scholar 

  72. Ando M, Kol S, Irahara M, Sirois J, Adashi EY (1999) Non-steroidal anti-inflammatory drugs (NSAIDs) block the late, prostanoid-dependent/ceramide-independent component of ovarian IL-1 action: implications for the ovulatory process. Mol Cell Endocrinol 157:21–30

    Article  CAS  PubMed  Google Scholar 

  73. Hurwitz A, Finci-Yeheskel Z, Dushnik M, Milwidsky A, Shimonovitz S, Yagel S, Adashi EY, Mayer M (1995) Interleukin-1-mediated regulation of plasminogen activation in pregnant mare serum gonadotropin-primed rat granulosa cells is independent of prostaglandin production. J Soc Gynecol Investig 2:691–699

    CAS  PubMed  Google Scholar 

  74. Watanabe H, Nagai K, Yamaguchi M, Ikenoue T, Mori N (1993) Interleukin-1 beta stimulates prostaglandin E2 and F2 alpha synthesis in human ovarian granulosa cells in culture. Prostaglandins Leukot Essent Fatty Acids 49:963–967

    Article  CAS  PubMed  Google Scholar 

  75. Hurwitz A, Finci-Yeheskel Z, Dushnik M, Milwidsky A, Ben-Chetrit A, Yagel S, Adashi EY, Mayer M (1994) Cytokine-mediated regulation of rat ovarian function: interleukin-1 inhibits plasminogen activator activity through the induction of plasminogen activator inhibitor-1 (PAI-1). Mol Cell Endocrinol 101:307–314

    Article  CAS  PubMed  Google Scholar 

  76. Bonello NP, Norman RJ, Brännström M (1995) Interleukin-1β inhibits luteinizing hormone-induced plasminogen activator activity in rat preovulatory folliclesin vitro. Endocrine 3:49–54. https://doi.org/10.1007/BF02917448

    Article  CAS  PubMed  Google Scholar 

  77. Zeleznik AJ (2004) The physiology of follicle selection. Reprod Biol Endocrinol 2:31. https://doi.org/10.1186/1477-7827-2-31

    Article  PubMed  PubMed Central  Google Scholar 

  78. Homburg R (2009) The mechanism of ovulation. Glob Libr Women’s Med. https://doi.org/10.3843/GLOWM.10290

  79. Batista MC, Cartledge TP, Zellmer AW, Nieman LK, Merriam GR, Loriaux DL (1992) Evidence for a critical role of progesterone in the regulation of the midcycle gonadotropin surge and ovulation. J Clin Endocrinol Metab 74:565–570. https://doi.org/10.1210/jcem.74.3.1740491

    Article  CAS  PubMed  Google Scholar 

  80. Karagouni EE, Chryssikopoulos A, Mantzavinos T, Kanakas N, Dotsika EN (1998) Interleukin-1beta and interleukin-1alpha may affect the implantation rate of patients undergoing in vitro fertilization-embryo transfer. Fertil Steril 70:553–559

    Article  CAS  PubMed  Google Scholar 

  81. Watanabe H, Nagai K, Yamaguchi M, Ikenoue T, Mori N (1994) Concentration of interleukin-1 beta correlates with prostaglandin E2 and F2 alpha in human pre-ovulatory follicular fluid. Hum Reprod 9:9–12

    Article  CAS  PubMed  Google Scholar 

  82. Dinarello CA (2005) Blocking IL-1 in systemic inflammation. J Exp Med 201:1355–1359. https://doi.org/10.1084/jem.20050640

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Ridker PM (2016) From C-reactive protein to interleukin-6 to interleukin-1. Circ Res 118:145–156. https://doi.org/10.1161/CIRCRESAHA.115.306656

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Kelly CCJ, Lyall H, Petrie JR, Gould GW, Connell JMC, Sattar N (2001) Low grade chronic inflammation in women with polycystic ovarian syndrome. J Clin Endocrinol Metab 86:2453–2455. https://doi.org/10.1210/jcem.86.6.7580

    Article  CAS  PubMed  Google Scholar 

  85. Escobar-Morreale HF, Luque-Ramírez M, González F (2011) Circulating inflammatory markers in polycystic ovary syndrome: a systematic review and metaanalysis. Fertil Steril 95:1048–1058.e2. https://doi.org/10.1016/J.FERTNSTERT.2010.11.036

    Article  CAS  PubMed  Google Scholar 

  86. González F, Rote NS, Minium J, Kirwan JP (2006) Increased activation of nuclear factor κB triggers inflammation and insulin resistance in polycystic ovary syndrome. J Clin Endocrinol Metab 91:1508–1512. https://doi.org/10.1210/jc.2005-2327

    Article  CAS  PubMed  Google Scholar 

  87. González F, Sia CL, Shepard MK, Rote NS, Minium J (2014) The altered mononuclear cell-derived cytokine response to glucose ingestion is not regulated by excess adiposity in polycystic ovary syndrome. J Clin Endocrinol Metab 99:E2244–E2251. https://doi.org/10.1210/jc.2014-2046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Guo R, Zheng Y, Yang J, Zheng N (2015) Association of TNF-alpha, IL-6 and IL-1beta gene polymorphisms with polycystic ovary syndrome: a meta-analysis. BMC Genet 16:5. https://doi.org/10.1186/s12863-015-0165-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Kolbus A, Walch K, Nagele F, Wenzl R, Unfried G, Huber JC (2007) Interleukin-1 alpha but not interleukin-1 beta gene polymorphism is associated with polycystic ovary syndrome. J Reprod Immunol 73:188–193. https://doi.org/10.1016/J.JRI.2006.08.002

    Article  CAS  PubMed  Google Scholar 

  90. Kolbus A, Walch K, Szabo L, Huber JC, Nagele F, Unfried G (2006) A polymorphism of the interleukin 1 receptor antagonist is not associated with polycystic ovary syndrome in Caucasian women. Fertil Steril 85:523–525. https://doi.org/10.1016/J.FERTNSTERT.2005.07.1317

    Article  CAS  PubMed  Google Scholar 

  91. Dror E, Dalmas E, Meier DT, Wueest S, Thévenet J, Thienel C, Timper K, Nordmann TM, Traub S, Schulze F, Item F, Vallois D, Pattou F, Kerr-Conte J, Lavallard V, Berney T, Thorens B, Konrad D, Böni-Schnetzler M, Donath MY (2017) Postprandial macrophage-derived IL-1β stimulates insulin, and both synergistically promote glucose disposal and inflammation. Nat Immunol 18:283–292. https://doi.org/10.1038/ni.3659

    Article  CAS  PubMed  Google Scholar 

  92. Donath MY (2014) Targeting inflammation in the treatment of type 2 diabetes: time to start. Nat Rev Drug Discov 13:465–476. https://doi.org/10.1038/nrd4275

    Article  CAS  PubMed  Google Scholar 

  93. Jager J, Grémeaux T, Cormont M, le Marchand-Brustel Y, Tanti JF (2007) Interleukin-1β-induced insulin resistance in adipocytes through down-regulation of insulin receptor substrate-1 expression. Endocrinology 148:241–251. https://doi.org/10.1210/en.2006-0692

    Article  CAS  PubMed  Google Scholar 

  94. Larsen CM, Faulenbach M, Vaag A, Vølund A, Ehses JA, Seifert B, Mandrup-Poulsen T, Donath MY (2007) Interleukin-1–receptor antagonist in type 2 diabetes mellitus. N Engl J Med 356:1517–1526. https://doi.org/10.1056/NEJMoa065213

    Article  CAS  PubMed  Google Scholar 

  95. Ridker PM, Everett BM, Thuren T, MacFadyen J, Chang WH, Ballantyne C, Fonseca F, Nicolau J, Koenig W, Anker SD, Kastelein JJP, Cornel JH, Pais P, Pella D, Genest J, Cifkova R, Lorenzatti A, Forster T, Kobalava Z, Vida-Simiti L, Flather M, Shimokawa H, Ogawa H, Dellborg M, Rossi PRF, Troquay RPT, Libby P, Glynn RJ, CANTOS Trial Group (2017) Antiinflammatory therapy with canakinumab for atherosclerotic disease. N Engl J Med 377:1119–1131. https://doi.org/10.1056/NEJMoa1707914

    Article  CAS  PubMed  Google Scholar 

  96. Dunaif A, Segal KR, Futterweit W, Dobrjansky A (1989) Profound peripheral insulin resistance, independent of obesity, in polycystic ovary syndrome. Diabetes 38:1165–1174

    Article  CAS  PubMed  Google Scholar 

  97. Jonard S, Robert Y, Ardaens Y, Dewailly D (2006) Ovarian histology, morphology, and ultrasonography in the polycystic ovary syndrome. In: Androgen excess disorders in women. Humana Press, Totowa, NJ, pp 183–193

    Google Scholar 

  98. Lima PDA, Nivet A-L, Wang Q, Chen YA, Leader A, Cheung A, Tzeng CR, Tsang BK (2018) Polycystic ovary syndrome: possible involvement of androgen-induced, chemerin-mediated ovarian recruitment of monocytes/macrophages†. Biol Reprod 99:838–852. https://doi.org/10.1093/biolre/ioy096

    Article  PubMed  PubMed Central  Google Scholar 

  99. Jasper M, Norman RJ (1995) Immunoactive interleukin-1 beta and tumour necrosis factor-alpha in thecal, stromal and granulosa cell cultures from normal and polycystic ovaries. Hum Reprod 10:1352–1354

    Article  CAS  PubMed  Google Scholar 

  100. Kiddy DS, Sharp PS, White DM et al (1990) Differences in clinical and endocrine features between obese and non-obese subjects with polycystic ovary syndrome: an analysis of 263 consecutive cases. Clin Endocrinol 32:213–220

    Article  CAS  Google Scholar 

  101. Samy N, Hashim M, Sayed M, Said M (2009) Clinical significance of inflammatory markers in polycystic ovary syndrome: their relationship to insulin resistance and body mass index. Dis Markers 26:163–170. https://doi.org/10.3233/DMA-2009-0627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Gonzalez F, Nair KS, Daniels JK et al (2012) Hyperandrogenism sensitizes mononuclear cells to promote glucose-induced inflammation in lean reproductive-age women. AJP Endocrinol Metab 302:E297–E306. https://doi.org/10.1152/ajpendo.00416.2011

    Article  CAS  Google Scholar 

  103. González F, Sia CL, Stanczyk FZ, Blair HE, Krupa ME (2012) Hyperandrogenism exerts an anti-inflammatory effect in obese women with polycystic ovary syndrome. Endocrine 42:726–735. https://doi.org/10.1007/s12020-012-9728-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Harmanci A, Cinar N, Bayraktar M, Yildiz BO (2013) Oral contraceptive plus antiandrogen therapy and cardiometabolic risk in polycystic ovary syndrome. Clin Endocrinol 78:120–125. https://doi.org/10.1111/j.1365-2265.2012.04466.x

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Milica Popovic.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

This article is a contribution to the special issue on Inflammation and Type 2 Diabetes - Guest Editor: Marc Y. Donath

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Popovic, M., Sartorius, G. & Christ-Crain, M. Chronic low-grade inflammation in polycystic ovary syndrome: is there a (patho)-physiological role for interleukin-1?. Semin Immunopathol 41, 447–459 (2019). https://doi.org/10.1007/s00281-019-00737-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00281-019-00737-4

Keywords

Navigation