Skip to main content

Advertisement

Log in

Macrophage-microbe interaction: lessons learned from the pathogen Mycobacterium tuberculosis

  • Review
  • Published:
Seminars in Immunopathology Aims and scope Submit manuscript

Abstract

Macrophages, being the cornerstone of the immune system, have adapted the ancient nutrient acquisition mechanism of phagocytosis to engulf various infectious organisms thereby helping to orchestrate an appropriate host response. Phagocytosis refers to the process of internalization and degradation of particulate material, damaged and senescent cells and microorganisms by specialized cells, after which the vesicle containing the ingested particle, the phagosome, matures into acidic phagolysosomes upon fusion with hydrolytic enzyme-containing lysosomes. The destructive power of the macrophage is further exacerbated through the induction of macrophage activation upon a variety of inflammatory stimuli. Despite being the end-point for many phagocytosed microbes, the macrophage can also serve as an intracellular survival niche for a number of intracellular microorganisms. One microbe that is particularly successful at surviving within macrophages is the pathogen Mycobacterium tuberculosis, which can efficiently manipulate the macrophage at several levels, including modulation of the phagocytic pathway as well as interfering with a number of immune activation pathways that normally would lead to eradication of the internalized bacilli. M. tuberculosis excels at circumventing destruction within macrophages, thus establishing itself successfully for prolonged times within the macrophage. In this contribution, we describe a number of general features of macrophages in the context of their function to clear an infection, and highlight the strategies employed by M. tuberculosis to counter macrophage attack. Interestingly, research on the evasion tactics employed by M. tuberculosis within macrophages not only helps to design strategies to curb tuberculosis, but also allows a better understanding of host cell biology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aderem A, Underhill DM (1999) Mechanisms of phagocytosis in macrophages. Annu Rev Immunol 17(1):593–623

    Article  CAS  PubMed  Google Scholar 

  2. Weiss G, Schaible UE (2015) Macrophage defense mechanisms against intracellular bacteria. Immunol Rev 264(1):182–203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Snelgrove RJ, Goulding J, Didierlaurent AM, Lyonga D, Vekaria S, Edwards L, Gwyer E, Sedgwick JD, Barclay AN, Hussell T (2008) A critical function for CD200 in lung immune homeostasis and the severity of influenza infection. Nat Immunol 9(9):1074–1083

    Article  CAS  PubMed  Google Scholar 

  4. Wert SE, Yoshida M, LeVine AM, Ikegami M, Jones T, Ross GF, Fisher JH, Korfhagen TR, Whitsett JA (2000) Increased metalloproteinase activity, oxidant production, and emphysema in surfactant protein D gene-inactivated mice. Proc Natl Acad Sci U S A 97(11):5972–5977

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Dixon LJ, Barnes M, Tang H, Pritchard MT, Nagy LE (2013) Kupffer cells in the liver, comprehensive physiology, Wiley

  6. Klei TRL, Meinderts SM, van den Berg TK, van Bruggen R (2017) From the cradle to the grave: the role of macrophages in erythropoiesis and erythrophagocytosis. Front Immunol 8:73

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Ruggiero MG, Ferretti L, Glomski C, Pica A (2013) Erythrophagocytosis in circulating blood of loggerhead turtles Caretta caretta: the pitting of Heinz bodies. J Exp Zool A Ecol Genet Physiol 321(3):144–150

    Article  PubMed  Google Scholar 

  8. de Back DZ, Kostova EB, van Kraaij M, van den Berg TK, van Bruggen R (2014) Of macrophages and red blood cells; a complex love story. Front Physiol 5:9

    PubMed  PubMed Central  Google Scholar 

  9. Manwani D, Bieker JJ (2008) Chapter 2 the erythroblastic island. Red cell development. Elsevier, pp 23–53

  10. Bronte V, Pittet MJ (2013) The spleen in local and systemic regulation of immunity. Immunity 39(5):806–818

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Mantovani A, Biswas SK, Galdiero MR, Sica A, Locati M (2012) Macrophage plasticity and polarization in tissue repair and remodelling. J Pathol 229(2):176–185

    Article  PubMed  CAS  Google Scholar 

  12. Rabinovitch M (1995) Professional and non-professional phagocytes: an introduction. Trends Cell Biol 5(3):85–87

    Article  CAS  PubMed  Google Scholar 

  13. Dersch P (2002) Molecular and cellular mechanisms of bacterial entry into host cells, contributions to microbiology. KARGER, pp 183–209

  14. Kaufmann SHE, Dorhoi A (2016) Molecular determinants in phagocyte-bacteria interactions. Immunity 44(3):476–491

    Article  CAS  PubMed  Google Scholar 

  15. Sarantis H, Grinstein S (2012) Subversion of phagocytosis for pathogen survival. Cell Host Microbe 12(4):419–431

    Article  CAS  PubMed  Google Scholar 

  16. Mitchell G, Chen C, Portnoy DA (2016) Strategies used by bacteria to grow in macrophages. Microbiol Spectr 4(3)MCHD-0012-2015

  17. Woolard MD, Frelinger JA (2008) Outsmarting the host: bacteria modulating the immune response. Immunol Res 41(3):188–202

    Article  CAS  PubMed  Google Scholar 

  18. Andersson K, Carballeira N, Magnusson K-E, Persson C, Stendahl O, Wolf-Watz H, Fällman M (1996) YopH of Yersinia pseudotuberculosis interrupts early phosphotyrosine signalling associated with phagocytosis. Mol Microbiol 20(5):1057–1069

    Article  CAS  PubMed  Google Scholar 

  19. McGhie EJ, Brawn LC, Hume PJ, Humphreys D, Koronakis V (2009) Salmonella takes control: effector-driven manipulation of the host. Curr Opin Microbiol 12(1):117–124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kaniga K, Uralil J, Bliska JB, Galán JE (1996) A secreted protein tyrosine phosphatase with modular effector domains in the bacterial pathogen Salmonella typhimurlum. Mol Microbiol 21(3):633–641

    Article  CAS  PubMed  Google Scholar 

  21. Fu Y, Galan JE (1999) A salmonella protein antagonizes Rac-1 and Cdc42 to mediate host-cell recovery after bacterial invasion. Nature 401(6750):293–297

    Article  CAS  PubMed  Google Scholar 

  22. Johnson R, Byrne A, Berger CN, Klemm E, Crepin VF, Dougan G, Frankel G (2017) The type III secretion system effector SptP of Salmonella enterica Serovar Typhi. J Bacteriol 199(4)

  23. Bakowski MA, Braun V, Lam GY, Yeung T, Do Heo W, Meyer T, Finlay BB, Grinstein S, Brumell JH (2010) The phosphoinositide phosphatase SopB manipulates membrane surface charge and trafficking of the Salmonella-containing vacuole. Cell Host Microbe 7(6):453–462

    Article  CAS  PubMed  Google Scholar 

  24. Konradt C, Frigimelica E, Nothelfer K, Puhar A, Salgado-Pabon W, di Bartolo V, Scott-Algara D, Cristina D, Rodrigues PJ, Sansonetti AP (2011) The Shigella flexneri type three secretion system effector IpgD inhibits T cell migration by manipulating host phosphoinositide metabolism. Cell Host Microbe 9(4):263–272

    Article  CAS  PubMed  Google Scholar 

  25. Hsu F, Mao Y (2015) The structure of phosphoinositide phosphatases: insights into substrate specificity and catalysis. Biochim Biophys Acta Mol Cell Biol Lipids 1851(6):698–710

    Article  CAS  Google Scholar 

  26. Ibarra JA, Steele-Mortimer O (2009) Salmonella- the ultimate insider. Salmonella virulence factors that modulate intracellular survival. Cell Microbiol 11(11):1579–1586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Haraga A, West TE, Brittnacher MJ, Skerrett SJ, Miller SI (2008) Burkholderia thailandensis as a model system for the study of the virulence-associated type III secretion system of Burkholderia pseudomallei. Infect Immun 76(11):5402–5411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Castro-Gomes T, Cardoso MS, DaRocha WD, Laibida LA, Nascimento AMA, Zuccherato LW, Horta MF, Bemquerer MP, Teixeira SMR (2014) Identification of secreted virulence factors of Chromobacterium violaceum. J Microbiol 52(4):350–353

    Article  CAS  PubMed  Google Scholar 

  29. Theriot JA (1995) The cell biology of infection by intracellular bacterial pathogens. Annu Rev Cell Dev Biol 11:213

    Article  CAS  PubMed  Google Scholar 

  30. Radoshevich L, Cossart P (2018) Listeria monocytogenes: towards a complete picture of its physiology and pathogenesis. Nat Rev Microbiol 16(1):32–46

    Article  CAS  PubMed  Google Scholar 

  31. Okagaki LH, Strain AK, Nielsen JN, Charlier C, Baltes NJ, Chretien F, Heitman J, Dromer F, Nielsen K (2010) Cryptococcal cell morphology affects host cell interactions and pathogenicity. PLoS Pathog 6(6):e1000953

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Zaragoza O, Garcia-Rodas R, Nosanchuk JD, Cuenca-Estrella M, Rodriguez-Tudela JL, Casadevall A (2010) Fungal cell gigantism during mammalian infection. PLoS Pathog 6(6):e1000945

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Paulson T (2013) Epidemiology: a mortal foe. Nature 502(7470):S2–S3

    Article  PubMed  CAS  Google Scholar 

  34. Dorhoi A, Kaufmann SH (2016) Pathology and immune reactivity: understanding multidimensionality in pulmonary tuberculosis. Semin Immunopathol 38(2):153–166

    Article  CAS  PubMed  Google Scholar 

  35. Stutz MD, Clark MP, Doerflinger M, Pellegrini M (2017) Mycobacterium tuberculosis : rewiring host cell signaling to promote infection. J Leukoc Biol 103(2):259–268

    Article  PubMed  CAS  Google Scholar 

  36. Henderson HJ, Dannenberg AM Jr, Lurie MB (1963) Phagocytosis of tubercle bacilli by rabbit pulmonary alveolar macrophages and its relation to native resistance to tuberculosis. J Immunol (91):553–556

  37. Teitelbaum R, Schubert W, Gunther L, Kress Y, Macaluso F, Pollard JW, McMurray DN, Bloom BR (1999) The M cell as a portal of entry to the lung for the bacterial pathogen Mycobacterium tuberculosis. Immunity 10(6):641–650

    Article  CAS  PubMed  Google Scholar 

  38. Cambier CJ, O’Leary SM, O’Sullivan MP, Keane J, Ramakrishnan L (2017) Phenolic glycolipid facilitates mycobacterial escape from microbicidal tissue-resident macrophages. Immunity 47(3):552–565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. BoseDasgupta S, Pieters J (2014) Striking the right balance determines TB or not TB. Front Immunol 5:455

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Pieters J (2008) Mycobacterium tuberculosis and the macrophage: maintaining a balance. Cell Host Microbe 3(6):399–407

    Article  CAS  PubMed  Google Scholar 

  41. Talaue MT, Venketaraman V, Hazbon MH, Peteroy-Kelly M, Seth A, Colangeli R, Alland D, Connell ND (2006) Arginine homeostasis in J774.1 macrophages in the context of Mycobacterium bovis BCG infection. J Bacteriol 188(13):4830–4840

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Das P, Lahiri A, Lahiri A, Chakravortty D (2010) Modulation of the arginase pathway in the context of microbial pathogenesis: a metabolic enzyme moonlighting as an immune modulator. PLoS Pathog 6(6):e1000899

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Nathan C, Shiloh MU (2000) Reactive oxygen and nitrogen intermediates in the relationship between mammalian hosts and microbial pathogens. Proc Natl Acad Sci U S A 97(16):8841–8848

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Reiling N, Blumenthal A, Flad HD, Ernst M, Ehlers S (2001) Mycobacteria-induced TNF- and IL-10 formation by human macrophages is differentially regulated at the level of mitogen-activated protein kinase activity. J Immunol 167(6):3339–3345

    Article  CAS  PubMed  Google Scholar 

  45. Bogdan C (2001) Nitric oxide and the immune response. Nat Immunol 2(10):907–916

    Article  CAS  PubMed  Google Scholar 

  46. Peranzoni E, Marigo I, Dolcetti L, Ugel S, Sonda N, Taschin E, Mantelli B, Bronte V, Zanovello P (2007) Role of arginine metabolism in immunity and immunopathology. Immunobiology 212(9–10):795–812

    CAS  PubMed  Google Scholar 

  47. McClean CM, Tobin DM (2016) Macrophage form, function, and phenotype in mycobacterial infection: lessons from tuberculosis and other diseases. Pathog Dis 74(7):ftw068

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Fratazzi C, Arbeit RD, Carini C, Balcewicz-Sablinska MK, Keane J, Kornfeld H, Remold HG (1999) Macrophage apoptosis in mycobacterial infections. J Leukoc Biol 66(5):763–764

    Article  CAS  PubMed  Google Scholar 

  49. van der Wel N, Hava D, Houben D, Fluitsma D, van Zon M, Pierson J, Brenner M, Peters PJ (2007) M. tuberculosis and M. leprae translocate from the phagolysosome to the cytosol in myeloid cells. Cell 129(7):1287–1298

    Article  PubMed  CAS  Google Scholar 

  50. Sundaramurthy V, Korf H, Singla A, Scherr N, Nguyen L, Ferrari G, Landmann R, Huygen K, Pieters J (2017) Survival of Mycobacterium tuberculosis and Mycobacterium bovis BCG in lysosomes in vivo. Microbes Infect 19(11):515–526

    Article  CAS  PubMed  Google Scholar 

  51. Levitte S, Adams KN, Berg RD, Cosma CL, Urdahl KB, Ramakrishnan L (2016) Mycobacterial acid tolerance enables phagolysosomal survival and establishment of tuberculous infection in vivo. Cell Host Microbe 20(2):250–258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Kim M-J, Wainwright HC, Locketz M, Bekker L-G, Walther GB, Dittrich C, Visser A, Wang W, Hsu F-F, Wiehart U, Tsenova L, Kaplan G, Russell DG (2010) Caseation of human tuberculosis granulomas correlates with elevated host lipid metabolism. EMBO Mol Med 2(7):258–274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Ramakrishnan L (2012) Revisiting the role of the granuloma in tuberculosis. Nat Rev Immunol 12(5):352–366

    Article  CAS  PubMed  Google Scholar 

  54. Russell DG, Cardona P-J, Kim M-J, Allain S, Altare F (2009) Foamy macrophages and the progression of the human tuberculosis granuloma. Nat Immunol 10(9):943–948

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Ferguson JS, Weis JJ, Martin JL, Schlesinger LS (2004) Complement protein C3 binding to Mycobacterium tuberculosis is initiated by the classical pathway in human Bronchoalveolar lavage fluid. Infect Immun 72(5):2564–2573

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Kang PB, Azad AK, Torrelles JB, Kaufman TM, Beharka A, Tibesar E, DesJardin LE, Schlesinger LS (2005) The human macrophage mannose receptor directs Mycobacterium tuberculosis lipoarabinomannan-mediated phagosome biogenesis. J Exp Med 202(7):987–999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Pasula R, Downing JF, Wright JR, Kachel DL, Davis TE, Martin WJ (1997) Surfactant protein a (SP-A) mediates attachment of Mycobacterium tuberculosis to murine alveolar macrophages. Am J Respir Cell Mol Biol 17(2):209–217

    Article  CAS  PubMed  Google Scholar 

  58. Dunne DW, Resnick D, Greenberg J, Krieger M, Joiner KA (1994) The type I macrophage scavenger receptor binds to gram-positive bacteria and recognizes lipoteichoic acid. Proc Natl Acad Sci 91(5):1863–1867

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Kumar SK, Singh P, Sinha S (2015) Naturally produced opsonizing antibodies restrict the survival of Mycobacterium tuberculosisin human macrophages by augmenting phagosome maturation. Open Biology 5(12):150171

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Casadevall A (2016) To be or not be a (functional) antibody against TB. Cell 167(2):306–307

    Article  CAS  PubMed  Google Scholar 

  61. Lu LL, Chung AW, Rosebrock TR, Ghebremichael M, Yu WH, Grace PS, Schoen MK, Tafesse F, Martin C, Leung V, Mahan AE, Sips M, Kumar MP, Tedesco J, Robinson H, Tkachenko E, Draghi M, Freedberg KJ, Streeck H, Suscovich TJ, Lauffenburger DA, Restrepo BI, Day C, Fortune SM, Alter G (2016) A functional role for antibodies in tuberculosis. Cell 167(2):433–443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Janeway CA Jr (1989) Approaching the asymptote? Evolution and revolution in immunology. Cold Spring Harb Symp Quant Biol 54(Pt 1):1–13

    Article  CAS  PubMed  Google Scholar 

  63. Ferrandon D, Imler J-L, Hoffmann JA (2004) Sensing infection in Drosophila: toll and beyond. Semin Immunol 16(1):43–53

    Article  CAS  PubMed  Google Scholar 

  64. Beutler B, Poltorak A (2001) Toll we meet again. Nat Immunol 2(1):9–10

    Article  CAS  PubMed  Google Scholar 

  65. Kawai T, Akira S (2006) Innate immune recognition of viral infection. Nat Immunol 7(2):131–137

    Article  CAS  PubMed  Google Scholar 

  66. Tailleux L, Schwartz O, Herrmann JL, Pivert E, Jackson M, Amara A, Legres L, Dreher D, Nicod LP, Gluckman JC, Lagrange PH, Gicquel B, Neyrolles O (2003) DC-SIGN is the major Mycobacterium tuberculosis receptor on human dendritic cells. J Exp Med 197(1):121–127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Geijtenbeek TB, Van Vliet SJ, Koppel EA, Sanchez-Hernandez M, Vandenbroucke-Grauls CM, Appelmelk B, Van Kooyk Y (2003) Mycobacteria target DC-SIGN to suppress dendritic cell function. J Exp Med 197(1):7–17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Shams H, Wizel B, Lakey DL, Samten B, Vankayalapati R, Valdivia RH, Kitchens RL, Griffith DE, Barnes PF (2003) The CD14 receptor does not mediate entry of Mycobacterium tuberculosis into human mononuclear phagocytes. FEMS Immunology & Medical Microbiology 36(1–2):63–69

    Article  CAS  Google Scholar 

  69. Guirado E, Schlesinger LS, Kaplan G (2013) Macrophages in tuberculosis: friend or foe. Semin Immunopathol 35(5):563–583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Yamashiro LH, Oliveira SC, Báfica A (2014) Innate immune sensing of nucleic acids from mycobacteria. Microbes Infect 16(12):991–997

    Article  CAS  PubMed  Google Scholar 

  71. Yadav M, Schorey JS (2006) The beta-glucan receptor dectin-1 functions together with TLR2 to mediate macrophage activation by mycobacteria. Blood 108(9):3168–3175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Armstrong JA, Hart PD (1971) Response of cultured macrophages to Mycobacterium tuberculosis, with observations on fusion of lysosomes with phagosomes. J Exp Med 134(3 Pt 1):713–740

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Russell DG (2001) Mycobacterium tuberculosis: here today, and here tomorrow. Nat Rev Mol Cell Biol 2(8):569–577

    Article  CAS  PubMed  Google Scholar 

  74. Nguyen L, Pieters J (2009) Mycobacterial subversion of chemotherapeutic reagents and host defense tactics: challenges in tuberculosis drug development. Annu Rev Pharmacol Toxicol 49:427–453

    Article  CAS  PubMed  Google Scholar 

  75. Sturgill-Koszycki S, Schlesinger PH, Chakraborty P, Haddix PL, Collins HL, Fok AK, Allen RD, Gluck SL, Heuser J, Russell DG (1994) Lack of acidification in Mycobacterium phagosomes produced by exclusion of the vesicular proton-ATPase. Science 263:678–681

    Article  CAS  PubMed  Google Scholar 

  76. Warner DF, Mizrahi V (2007) The survival kit of Mycobacterium tuberculosis. Nat Med 13(3):282–284

    Article  CAS  PubMed  Google Scholar 

  77. Ferrari G, Langen H, Naito M, Pieters J (1999) A coat protein on phagosomes involved in the intracellular survival of mycobacteria. Cell 97(4):435–447

    Article  CAS  PubMed  Google Scholar 

  78. Gatfield J, Pieters J (2000) Essential role for cholesterol in entry of mycobacteria into macrophages. Science 288(5471):1647–1651

    Article  CAS  PubMed  Google Scholar 

  79. Jayachandran R, Sundaramurthy V, Combaluzier B, Mueller P, Korf H, Huygen K, Miyazaki T, Albrecht I, Massner J, Pieters J (2007) Survival of mycobacteria in macrophages is mediated by Coronin 1-dependent activation of calcineurin. Cell 130(1):37–50

    Article  CAS  PubMed  Google Scholar 

  80. Pieters J, Müller P, Jayachandran R (2013) On guard: coronin proteins in innate and adaptive immunity. Nat Rev Immunol 13(7):510–518

    Article  CAS  PubMed  Google Scholar 

  81. BoseDasgupta S, Pieters J (2014) Coronin 1 trimerization is essential to protect pathogenic mycobacteria within macrophages from lysosomal delivery. FEBS Lett 588(21):3898–3905

    Article  CAS  PubMed  Google Scholar 

  82. Kumar D, Nath L, Kamal MA, Varshney A, Jain A, Singh S, Rao KVS (2010) Genome-wide analysis of the host intracellular network that regulates survival of Mycobacterium tuberculosis. Cell 140(5):731–743

    Article  CAS  PubMed  Google Scholar 

  83. Mueller P, Massner J, Jayachandran R, Combaluzier B, Albrecht I, Gatfield J, Blum C, Ceredig R, Rodewald H-R, Rolink AG, Pieters J (2008) Regulation of T cell survival through coronin-1–mediated generation of inositol-1,4,5-trisphosphate and calcium mobilization after T cell receptor triggering. Nat Immunol 9(4):424–431

    Article  CAS  PubMed  Google Scholar 

  84. Shiow LR, Roadcap DW, Paris K, Watson SR, Grigorova IL, Lebet T, An J, Xu Y, Jenne CN, Föger N, Sorensen RU, Goodnow CC, Bear JE, Puck JM, Cyster JG (2008) The actin regulator coronin 1A is mutant in a thymic egress–deficient mouse strain and in a patient with severe combined immunodeficiency. Nat Immunol 9(11):1307–1315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Haraldsson MK, Louis-Dit-Sully CA, Lawson BR, Sternik G, Santiago-Raber ML, Gascoigne NR, Theofilopoulos AN, Kono DH (2008) The lupus-related Lmb3 locus contains a disease-suppressing Coronin-1A gene mutation. Immunity 28(1):40–51

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Lang MJ, Mori M, Ruer-Laventie J, Pieters J (2017) A Coronin 1–dependent decision switch in juvenile mice determines the population of the peripheral naive T cell compartment. J Immunol 199(7):2421–2431

    Article  CAS  PubMed  Google Scholar 

  87. Jayachandran R, Gatfield J, Massner J, Albrecht I, Zanolari B, Pieters J (2008) RNA interference in J774 macrophages reveals a role for Coronin 1 in mycobacterial trafficking but not in actin-dependent processes. Mol Biol Cell 19(3):1241–1251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. BoseDasgupta S, Pieters J (2014) Inflammatory stimuli reprogram macrophage phagocytosis to macropinocytosis for the rapid elimination of pathogens. PLoS Pathog 10(1):e1003879

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Jeschke A, Haas A (2016) Deciphering the roles of phosphoinositide lipids in phagolysosome biogenesis. Communicative & integrative biology 9(3):e1174798

    Article  CAS  Google Scholar 

  90. Bohdanowicz M, Grinstein S (2013) Role of phospholipids in endocytosis, phagocytosis, and macropinocytosis. Physiol Rev 93(1):69–106

    Article  CAS  PubMed  Google Scholar 

  91. Vieira OV, Harrison RE, Scott CC, Stenmark H, Alexander D, Liu J, Gruenberg J, Schreiber AD, Grinstein S (2004) Acquisition of Hrs, an essential component of phagosomal maturation is impaired by mycobacteria. Mol Cell Biol 24(10):4593–4604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Fratti RA, Backer JM, Gruenberg J, Corvera S, Deretic V (2001) Role of phosphatidylinositol 3-kinase and Rab5 effectors in phagosomal biogenesis and mycobacterial phagosome maturation arrest. J Cell Biol 154(3):631–644

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Dickson EJ, Jensen JB, Hille B (2016) Regulation of calcium and phosphoinositides at endoplasmic reticulum–membrane junctions. Biochem Soc Trans 44(2):467–473

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Burman C, Ktistakis NT (2010) Regulation of autophagy by phosphatidylinositol 3-phosphate. FEBS Lett 584(7):1302–1312

    Article  CAS  PubMed  Google Scholar 

  95. Fairn GD, Grinstein S (2012) How nascent phagosomes mature to become phagolysosomes. Trends Immunol 33(8):397–405

    Article  CAS  PubMed  Google Scholar 

  96. Marat AL, Haucke V (2016) Phosphatidylinositol 3-phosphates—at the interface between cell signalling and membrane traffic. EMBO J 35(6):561–579

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Indrigo J, Hunter RL Jr, Actor JK (2003) Cord factor trehalose 6,6′-dimycolate (TDM) mediates trafficking events during mycobacterial infection of murine macrophages. Microbiology 149(Pt 8):2049–2059

    Article  CAS  PubMed  Google Scholar 

  98. Axelrod S, Oschkinat H, Enders J, Schlegel B, Brinkmann V, Kaufmann SHE, Haas A, Schaible UE (2008) Delay of phagosome maturation by a mycobacterial lipid is reversed by nitric oxide. Cell Microbiol 10(7):1530–1545

    Article  CAS  PubMed  Google Scholar 

  99. Fratti RA et al (2003) Mycobacterium tuberculosis glycosylated phosphatidylinositol causes phagosome maturation arrest. Proc Natl Acad Sci U S A 100:5437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Vergne I, Chua J, Deretic V (2003) Tuberculosis toxin blocking phagosome maturation inhibits a novel Ca2+/calmodulin-PI3K hVPS34 cascade. J Exp Med 198(4):653–659

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  101. Puri RV, Reddy PV, Tyagi AK (2013) Secreted acid phosphatase (SapM) of Mycobacterium tuberculosis is indispensable for arresting phagosomal maturation and growth of the pathogen in Guinea pig tissues. PLoS One 8(7):e70514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Walburger A, Koul A, Ferrari G, Nguyen L, Prescianotto-Baschong C, Huygen K, Klebl B, Thompson C, Bacher G, Pieters J (2004) Protein kinase G from pathogenic mycobacteria promotes survival within macrophages. Science 304(5678):1800–1804

    Article  CAS  PubMed  Google Scholar 

  103. Cowley S, Ko M, Pick N, Chow R, Downing KJ, Gordhan BG, Betts JC, Mizrahi V, Smith DA, Stokes RW, Av-Gay Y (2004) The Mycobacterium tuberculosis protein serine/threonine kinase PknG is linked to cellular glutamate/glutamine levels and is important for growth in vivo. Mol Microbiol 52(6):1691–1702

    Article  CAS  PubMed  Google Scholar 

  104. Houben EN, Walburger A, Ferrari G, Nguyen L, Thompson CJ, Miess C, Vogel G, Mueller B, Pieters J (2009) Differential expression of a virulence factor in pathogenic and non-pathogenic mycobacteria. Mol Microbiol 72(1):41–52

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. van der Woude AD, Stoop EJ, Stiess M, Wang S, Ummels R, van Stempvoort G, Piersma SR, Cascioferro A, Jimenez CR, Houben EN, Luirink J, Pieters J, van der Sar AM, Bitter W (2014) Analysis of SecA2-dependent substrates in Mycobacterium marinum identifies protein kinase G (PknG) as a virulence effector. Cell Microbiol 16(2):280–295

    Article  PubMed  CAS  Google Scholar 

  106. Zulauf KE, Sullivan JT, Braunstein M (2018) The SecA2 pathway of Mycobacterium tuberculosis exports effectors that work in concert to arrest phagosome and autophagosome maturation. PLoS Pathog 14(4):e1007011

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  107. Wolff KA, de la Pena AH, Nguyen HT, Pham TH, Amzel LM, Gabelli SB, Nguyen L (2015) A redox regulatory system critical for mycobacterial survival in macrophages and biofilm development. PLoS Pathog 11(4):e1004839

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  108. Wolff KA, Nguyen HT, Cartabuke RH, Singh A, Ogwang S, Nguyen L (2009) Protein kinase G is required for intrinsic antibiotic resistance in mycobacteria. Antimicrob Agents Chemother 53(8):3515–3519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Mueller P, Pieters J (2017) Identification of mycobacterial GarA as a substrate of protein kinase G from M. tuberculosis using a KESTREL-based proteome wide approach. J Microbiol Methods 136:34–39

    Article  CAS  PubMed  Google Scholar 

  110. O'Hare HM, Duran R, Cervenansky C, Bellinzoni M, Wehenkel AM, Pritsch O, Obal G, Baumgartner J, Vialaret J, Johnsson K, Alzari PM (2008) Regulation of glutamate metabolism by protein kinases in mycobacteria. Mol Microbiol 70(6):1408–1423

    Article  CAS  PubMed  Google Scholar 

  111. Rieck B, Degiacomi G, Zimmermann M, Cascioferro A, Boldrin F, Lazar-Adler NR, Bottrill AR, le Chevalier F, Frigui W, Bellinzoni M, Lisa MN, Alzari PM, Nguyen L, Brosch R, Sauer U, Manganelli R, O'Hare HM (2017) PknG senses amino acid availability to control metabolism and virulence of Mycobacterium tuberculosis. PLoS Pathog 13(5):e1006399

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  112. Mottola G (2014) The complexity of Rab5 to Rab7 transition guarantees specificity of pathogen subversion mechanisms. Front Cell Infect Microbiol 4:180

    Article  PubMed  PubMed Central  Google Scholar 

  113. Wang J, Ge P, Qiang L, Tian F, Zhao D, Chai Q, Zhu M, Zhou R, Meng G, Iwakura Y, Gao GF, Liu CH (2017) The mycobacterial phosphatase PtpA regulates the expression of host genes and promotes cell proliferation. Nat Commun 8(1):244

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  114. Desvignes L, Wolf AJ, Ernst JD (2012) Dynamic roles of type I and type II IFNs in early infection with Mycobacterium tuberculosis. J Immunol 188(12):6205–6215

    Article  CAS  PubMed  Google Scholar 

  115. Jouanguy E, Lamhamedi-Cherradi S, Altare F, Fondanèche MC, Tuerlinckx D, Blanche S, Emile JF, Gaillard JL, Schreiber R, Levin M, Fischer A, Hivroz C, Casanova JL (1997) Partial interferon-gamma receptor 1 deficiency in a child with tuberculoid bacillus Calmette-Guérin infection and a sibling with clinical tuberculosis. J Clin Investig 100(11):2658–2664

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Okada S, Markle JG, Deenick EK, Mele F, Averbuch D, Lagos M, Alzahrani M, Al-Muhsen S, Halwani R, Ma CS, Wong N, Soudais C, Henderson LA, Marzouqa H, Shamma J, Gonzalez M, Martinez-Barricarte R, Okada C, Avery DT, Latorre D, Deswarte C, Jabot-Hanin F, Torrado E, Fountain J, Belkadi A, Itan Y, Boisson B, Migaud M, Arlehamn CSL, Sette A, Breton S, McCluskey J, Rossjohn J, de Villartay JP, Moshous D, Hambleton S, Latour S, Arkwright PD, Picard C, Lantz O, Engelhard D, Kobayashi M, Abel L, Cooper AM, Notarangelo LD, Boisson-Dupuis S, Puel A, Sallusto F, Bustamante J, Tangye SG, Casanova JL (2015) Immunodeficiencies. Impairment of immunity to Candida and Mycobacterium in humans with bi-allelic RORC mutations. Science 349(6248):606–613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Lewinsohn DA, Lewinsohn DM, Scriba TJ (2017) Polyfunctional CD4+ T cells as targets for tuberculosis vaccination. Front Immunol 8:1262

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  118. Ehrt S, Schnappinger D, Bekiranov S, Drenkow J, Shi S, Gingeras TR, Gaasterland T, Schoolnik G, Nathan C (2001) Reprogramming of the macrophage transcriptome in response to interferon-gamma and Mycobacterium tuberculosis: signaling roles of nitric oxide synthase-2 and phagocyte oxidase. J Exp Med 194(8):1123–1140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Feng CG, Collazo-Custodio CM, Eckhaus M, Hieny S, Belkaid Y, Elkins K, Jankovic D, Taylor GA, Sher A (2004) Mice deficient in LRG-47 display increased susceptibility to mycobacterial infection associated with the induction of lymphopenia. J Immunol 172(2):1163–1168

    Article  CAS  PubMed  Google Scholar 

  120. Tiwari S, Choi H-P, Matsuzawa T, Pypaert M, MacMicking JD (2009) Targeting of the GTPase Irgm1 to the phagosomal membrane via PtdIns(3,4)P2 and PtdIns(3,4,5)P3 promotes immunity to mycobacteria. Nat Immunol 10(8):907–917

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Duncan SA, Baganizi DR, Sahu R, Singh SR, Dennis VA (2017) SOCS proteins as regulators of inflammatory responses induced by bacterial infections: a review. Front Microbiol 8:2431

    Article  PubMed  PubMed Central  Google Scholar 

  122. Queval CJ, Song O-R, Carralot J-P, Saliou J-M, Bongiovanni A, Deloison G, Deboosère N, Jouny S, Iantomasi R, Delorme V, Debrie A-S, Park S-J, Gouveia JC, Tomavo S, Brosch R, Yoshimura A, Yeramian E, Brodin P (2017) Mycobacterium tuberculosis controls phagosomal acidification by targeting CISH-mediated signaling. Cell Rep 20(13):3188–3198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Mancuso G, Midiri A, Biondo C, Beninati C, Zummo S, Galbo R, Tomasello F, Gambuzza M, Macri G, Ruggeri A, Leanderson T, Teti G (2007) Type I IFN signaling is crucial for host resistance against different species of pathogenic bacteria. J Immunol 178(5):3126–3133

    Article  CAS  PubMed  Google Scholar 

  124. Donovan ML, Schultz TE, Duke TJ, Blumenthal A (2017) Type I interferons in the pathogenesis of tuberculosis: molecular drivers and immunological consequences. Front Immunol 8:1633

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  125. Pestka S, Krause CD, Walter MR (2004) Interferons, interferon-like cytokines, and their receptors. Immunol Rev 202(1):8–32

    Article  CAS  PubMed  Google Scholar 

  126. Isaacs A, Lindenmann J (1957) Virus interference. I. The interferon. Proc R Soc B Biol Sci 147(927):258–267

    CAS  Google Scholar 

  127. Stanley SA, Johndrow JE, Manzanillo P, Cox JS (2007) The type I IFN response to infection with Mycobacterium tuberculosis requires ESX-1-mediated secretion and contributes to pathogenesis. J Immunol 178(5):3143–3152

    Article  CAS  PubMed  Google Scholar 

  128. Jang A-R, Choi J-H, Shin SJ, Park J-H (2018) Mycobacterium tuberculosis ESAT6 induces IFN-β gene expression in macrophages via TLRs-mediated signaling. Cytokine 104:104–109

    Article  CAS  PubMed  Google Scholar 

  129. Pandey AK, Yang Y, Jiang Z, Fortune SM, Coulombe F, Behr MA, Fitzgerald KA, Sassetti CM, Kelliher MA (2009) NOD2, RIP2 and IRF5 play a critical role in the type I interferon response to Mycobacterium tuberculosis. PLoS Pathog 5(7):e1000500

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  130. Ruangkiattikul N, Nerlich A, Abdissa K, Lienenklaus S, Suwandi A, Janze N, Laarmann K, Spanier J, Kalinke U, Weiss S, Goethe R (2017) cGAS-STING-TBK1-IRF3/7 induced interferon-β contributes to the clearing of non tuberculous mycobacterial infection in mice. Virulence 8(7):1303–1315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Wiens KE, Ernst JD (2016) The mechanism for type I interferon induction by Mycobacterium tuberculosis is bacterial strain-dependent. PLoS Pathog 12(8):e1005809

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  132. Kopitar-Jerala N (2017) The role of interferons in inflammation and inflammasome activation. Front Immunol 8:873

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  133. Arango Duque G, Descoteaux A (2014) Macrophage cytokines: involvement in immunity and infectious diseases. Front Immunol 5:491

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  134. Moreira-Teixeira L, Mayer-Barber K, Sher A, O'Garra A (2018) Type I interferons in tuberculosis: foe and occasionally friend. J Exp Med 215(5):1273–1285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Akdis M, Burgler S, Crameri R, Eiwegger T, Fujita H, Gomez E, Klunker S, Meyer N, O’Mahony L, Palomares O, Rhyner C, Quaked N, Schaffartzik A, Van De Veen W, Zeller S, Zimmermann M, Akdis CA (2011) Interleukins, from 1 to 37, and interferon-γ: receptors, functions, and roles in diseases. J Allergy Clin Immunol 127(3):701–721.e70

    Article  CAS  PubMed  Google Scholar 

  136. Saunders BM, Frank AA, Orme IM, Cooper AM (2000) Interleukin-6 induces early gamma interferon production in the infected lung but is not required for generation of specific immunity to Mycobacterium tuberculosis infection. Infect Immun 68(6):3322–3326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Martinez AN, Mehra S, Kaushal D (2013) Role of interleukin 6 in innate immunity to Mycobacterium tuberculosis infection. J Infect Dis 207(8):1253–1261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Dinarello CA (2018) Overview of the IL-1 family in innate inflammation and acquired immunity. Immunol Rev 281(1):8–27

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Domingo-Gonzalez R, Prince O, Cooper A, Khader SA (2016) Cytokines and chemokines in Mycobacterium tuberculosis infection. Microbiol Spectrum 4(5)

  140. de Jong R, Altare F, Haagen IA, Elferink DG, Boer T, van Breda Vriesman PJ, Kabel PJ, Draaisma JM, van Dissel JT, Kroon FP, Casanova JL, Ottenhoff TH (1998) Severe mycobacterial and Salmonella infections in interleukin-12 receptor-deficient patients. Science 280(5368):1435–1438

    Article  PubMed  Google Scholar 

  141. Jouanguy E, Döffinger R, Dupuis S, Pallier A, Altare F, Casanova J-L (1999) IL-12 and IFN-γ in host defense against mycobacteria and salmonella in mice and men. Curr Opin Immunol 11(3):346–351

    Article  CAS  PubMed  Google Scholar 

  142. Cooper AM, Roberts AD, Rhoades ER, Callahan JE, Getzy DM, Orme IM (1995) The role of interleukin-12 in acquired immunity to Mycobacterium tuberculosis infection. Immunology 84(3):423–432

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Cooper A, Khader SA (2008) The role of cytokines in the initiation, expansion, and control of cellular immunity to tuberculosis. Immunol Rev 226:191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Ehlers S, Schaible UE (2013) The granuloma in tuberculosis: dynamics of a host–pathogen collusion. Front Immunol 3:411

    Article  PubMed  PubMed Central  Google Scholar 

  145. Raphael I, Nalawade S, Eagar TN, Forsthuber TG (2015) T cell subsets and their signature cytokines in autoimmune and inflammatory diseases. Cytokine 74(1):5–17

    Article  CAS  PubMed  Google Scholar 

  146. Harris J, De Haro SA, Master SS, Keane J, Roberts EA, Delgado M, Deretic V (2007) T helper 2 cytokines inhibit autophagic control of intracellular Mycobacterium tuberculosis. Immunity 27(3):505–517

    Article  CAS  PubMed  Google Scholar 

  147. Dahl KE, Shiratsuchi H, Hamilton BD, Ellner JJ, Toossi Z (1996) Selective induction of transforming growth factor beta in human monocytes by lipoarabinomannan of Mycobacterium tuberculosis. Infect Immun 64(2):399–405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Jeong YH, Hur Y-G, Lee H, Kim S, Cho J-E, Chang J, Shin SJ, Lee H, Kang YA, Cho S-N, Ha S-J (2014) Discrimination between active and latent tuberculosis based on ratio of antigen-specific to mitogen-induced IP-10 production. J Clin Microbiol 53(2):504–510

    Article  PubMed  CAS  Google Scholar 

  149. O'Leary S, O'Sullivan MP, Keane J (2011) IL-10 blocks phagosome maturation in mycobacterium tuberculosis-infected human macrophages. Am J Respir Cell Mol Biol 45(1):172–180

    Article  CAS  PubMed  Google Scholar 

  150. Harding CV, Boom WH (2010) Regulation of antigen presentation by Mycobacterium tuberculosis: a role for Toll-like receptors. Nat Rev Microbiol 8(4):296–307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Darwin KH, Ehrt S, Gutierrez-Ramos JC, Weich N, Nathan CF (2003) The proteasome of Mycobacterium tuberculosis is required for resistance to nitric oxide. Science 302(5652):1963–1966

    Article  CAS  PubMed  Google Scholar 

  152. Pieters J, Ploegh H (2003) Microbiology. Chemical warfare and mycobacterial defense. Science 302(5652):1900–1902

    Article  CAS  PubMed  Google Scholar 

  153. Pearce MJ, Mintseris J, Ferreyra J, Gygi SP, Darwin KH (2008) Ubiquitin-like protein involved in the proteasome pathway of Mycobacterium tuberculosis. Science 322(5904):1104–1107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Jastrab JB, Darwin KH (2015) Bacterial Proteasomes. Annu Rev Microbiol 69:109–127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Striebel F, Imkamp F, Özcelik D, Weber-Ban E (2014) Pupylation as a signal for proteasomal degradation in bacteria. Biochim Biophys Acta Mol Cell Res 1843(1):103–113

    Article  CAS  Google Scholar 

  156. Samanovic MI, Tu S, Novak O, Iyer LM, McAllister FE, Aravind L, Gygi SP, Hubbard SR, Strnad M, Darwin KH (2015) Proteasomal control of cytokinin synthesis protects Mycobacterium tuberculosis against nitric oxide. Mol Cell 57(6):984–994

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Shi X, Festa RA, Ioerger TR, Butler-Wu S, Sacchettini JC, Darwin KH, Samanovic MI (2014) The copper-responsive RicR regulon contributes to Mycobacterium tuberculosis virulence. mBio 5(1)

  158. Becker SH, Darwin KH (2017) Bacterial proteasomes: mechanistic and functional insights. Microbiol Mol Biol Rev 81(1)

  159. BoseDasgupta S, Moes S, Jenoe P, Pieters J (2015) Cytokine-induced macropinocytosis in macrophages is regulated by 14-3-3ζ through its interaction with serine-phosphorylated coronin 1. FEBS J 282(7):1167–1181

    Article  CAS  PubMed  Google Scholar 

  160. Boehm U, Klamp T, Groot M, Howard JC (1997) Cellular responses to interferon-γ. Annu Rev Immunol 15(1):749–795

    Article  CAS  PubMed  Google Scholar 

  161. Kim B-H, Shenoy AR, Kumar P, Bradfield CJ, MacMicking JD (2012) IFN-Inducible GTPases in host cell defense. Cell Host Microbe 12(4):432–444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Springer HM, Schramm M, Taylor GA, Howard JC (2013) Irgm1 (LRG-47), a regulator of cell-autonomous immunity, does not localize to mycobacterial or listerial phagosomes in IFN- -induced mouse cells. J Immunol 191(4):1765–1774

    Article  CAS  PubMed  Google Scholar 

  163. Astarie-Dequeker C, Le Guyader L, Malaga W, Seaphanh F-K, Chalut C, Lopez A, Guilhot C (2009) Phthiocerol Dimycocerosates of M. tuberculosis participate in macrophage invasion by inducing changes in the organization of plasma membrane lipids. PLoS Pathogens 5(2):e1000289

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  164. Casanova JL, Abel L (2002) Genetic dissection of immunity to mycobacteria: the human model. Annu Rev Immunol 20:581–620

    Article  CAS  PubMed  Google Scholar 

  165. Bustamante J, Arias AA, Vogt G, Picard C, Galicia LB, Prando C, Grant AV, Marchal CC, Hubeau M, Chapgier A, de Beaucoudrey L, Puel A, Feinberg J, Valinetz E, Janniere L, Besse C, Boland A, Brisseau JM, Blanche S, Lortholary O, Fieschi C, Emile JF, Boisson-Dupuis S, Al-Muhsen S, Woda B, Newburger PE, Condino-Neto A, Dinauer MC, Abel L, Casanova JL, Germline CYBB (2011) Mutations that selectively affect macrophages in kindreds with X-linked predisposition to tuberculous mycobacterial disease. Nat Immunol 12(3):213–221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Mattila JT, Ojo OO, Kepka-Lenhart D, Marino S, Kim JH, Eum SY, Via LE, Barry CE 3rd, Klein E, Kirschner DE, Morris SM Jr, Lin PL, Flynn JL (2013) Microenvironments in tuberculous granulomas are delineated by distinct populations of macrophage subsets and expression of nitric oxide synthase and arginase isoforms. J Immunol 191(2):773–784

    Article  CAS  PubMed  Google Scholar 

  167. Marakalala MJ, Martinez FO, Pluddemann A, Gordon S (2018) Macrophage heterogeneity in the immunopathogenesis of tuberculosis. Front Microbiol 9:1028

    Article  PubMed  PubMed Central  Google Scholar 

  168. Flynn JL, Chan J, Lin PL (2011) Macrophages and control of granulomatous inflammation in tuberculosis. Mucosal Immunol 4(3):271–278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Kaufmann SHE (2001) How can immunology contribute to the control of tuberculosis? Nat Rev Immunol 1(1):20–30

    Article  CAS  PubMed  Google Scholar 

  170. Ramachandra L, Chu RS, Askew D, Noss EH, Canaday DH, Potter NS, Johnsen A, Krieg AM, Nedrud JG, Boom WH, Harding CV (1999) Phagocytic antigen processing and effects of microbial products on antigen processing and T-cell responses. Immunol Rev 168(1):217–239

    Article  CAS  PubMed  Google Scholar 

  171. Pieters J (2001) Evasion of host cell defense mechanisms by pathogenic bacteria. Curr Opin Immunol 13(1):37–44

    Article  CAS  PubMed  Google Scholar 

  172. Espinosa-Cueto P, Magallanes-Puebla A, Castellanos C, Mancilla R (2017) Dendritic cells that phagocytose apoptotic macrophages loaded with mycobacterial antigens activate CD8 T cells via cross-presentation. PLoS One 12(8):e0182126

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  173. Harriff MJ, Purdy GE, Lewinsohn DM (2012) Escape from the phagosome: the explanation for MHC-I processing of mycobacterial antigens? Front Immunol 3:40

    Article  PubMed  PubMed Central  Google Scholar 

  174. Nunes-Alves C, Booty MG, Carpenter SM, Jayaraman P, Rothchild AC, Behar SM (2014) In search of a new paradigm for protective immunity to TB. Nat Rev Microbiol 12(4):289–299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Silva CL, Lowrie DB (2000) Identification and characterization of murine cytotoxic T cells that kill Mycobacterium tuberculosis. Infect Immun 68(6):3269–3274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Vyas JM, Van der Veen AG, Ploegh HL (2008) The known unknowns of antigen processing and presentation, nature reviews. Immunology 8(8):607–618

    CAS  PubMed  Google Scholar 

  177. Blum JS, Wearsch PA, Cresswell P (2013) Pathways of antigen processing. Annu Rev Immunol 31:443–473

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Noss EH, Pai RK, Sellati TJ, Radolf JD, Belisle J, Golenbock DT, Boom WH, Harding CV (2001) Toll-like receptor 2-dependent inhibition of macrophage class II MHC expression and antigen processing by 19-kDa lipoprotein of Mycobacterium tuberculosis. J Immunol 167(2):910–918

    Article  CAS  PubMed  Google Scholar 

  179. Garg A, Barnes PF, Roy S, Quiroga MF, Wu S, Garcia VE, Krutzik SR, Weis SE, Vankayalapati R (2008) Mannose-capped lipoarabinomannan- and prostaglandin E2-dependent expansion of regulatory T cells in human Mycobacterium tuberculosis infection. Eur J Immunol 38(2):459–469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Holla S, Stephen-Victor E, Prakhar P, Sharma M, Saha C, Udupa V, Kaveri SV, Bayry J, Balaji KN (2016) Mycobacteria-responsive sonic hedgehog signaling mediates programmed death-ligand 1- and prostaglandin E2-induced regulatory T cell expansion. Sci Rep 6(1)

  181. Cohen NR, Garg S, Brenner MB (2009) Antigen presentation by CD1 lipids, T cells, and NKT cells in microbial immunity. Adv Immunol 102:1–94

    Article  CAS  PubMed  Google Scholar 

  182. Van Rhijn I, Moody DB (2015) CD1 and mycobacterial lipids activate human T cells. Immunol Rev 264(1):138–153

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  183. Gagliardi MC, Teloni R, Giannoni F, Mariotti S, Remoli ME, Sargentini V, Videtta M, Pardini M, De Libero G, Coccia EM, Nisini R (2009) Mycobacteria exploit p38 signaling to affect CD1 expression and lipid antigen presentation by human dendritic cells. Infect Immun 77(11):4947–4952

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Gold MC, Napier RJ, Lewinsohn DM (2015) MR1-restricted mucosal associated invariant T (MAIT) cells in the immune response to Mycobacterium tuberculosis. Immunol Rev 264(1):154–166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Kjer-Nielsen L, Patel O, Corbett AJ, Le Nours J, Meehan B, Liu L, Bhati M, Chen Z, Kostenko L, Reantragoon R, Williamson NA, Purcell AW, Dudek NL, McConville MJ, O'Hair RA, Khairallah GN, Godfrey DI, Fairlie DP, Rossjohn J, McCluskey J (2012) MR1 presents microbial vitamin B metabolites to MAIT cells. Nature 491(7426):717–723

    Article  CAS  PubMed  Google Scholar 

  186. Mori L, Lepore M, De Libero G (2016) The immunology of CD1- and MR1-restricted T cells. Annu Rev Immunol 34:479–510

    Article  CAS  PubMed  Google Scholar 

  187. Cole ST, Brosch R, Parkhill J, Garnier T, Churcher C, Harris D, Gordon SV, Eiglmeier K, Gas S, Barry CE 3rd, Tekaia F, Badcock K, Basham D, Brown D, Chillingworth T, Connor R, Davies R, Devlin K, Feltwell T, Gentles S, Hamlin N, Holroyd S, Hornsby T, Jagels K, Barrell BG et al (1998) Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 393(6685):537–544

    Article  CAS  PubMed  Google Scholar 

  188. McDonough KA, Kress Y, Bloom BR (1993) Pathogenesis of tuberculosis: interaction of Mycobacterium tuberculosis with macrophages [published erratum appears in iInfect Immun 1993 Sep;61(9):4021-4]. Infect Immun 61(7):2763–2773

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Simeone R, Bobard A, Lippmann J, Bitter W, Majlessi L, Brosch R, Enninga J (2012) Phagosomal rupture by Mycobacterium tuberculosis results in toxicity and host cell death. PLoS Pathog 8(2):e1002507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Simeone R, Sayes F, Song O, Gröschel MI, Brodin P, Brosch R, Majlessi L (2015) Cytosolic access of Mycobacterium tuberculosis: critical impact of phagosomal acidification control and demonstration of occurrence in vivo. PLoS Pathog 11(2):e1004650

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  191. Houben D, Demangel C, van Ingen J, Perez J, Baldeón L, Abdallah AM, Caleechurn L, Bottai D, van Zon M, de Punder K, van der Laan T, Kant A, Bossers-de Vries R, Willemsen P, Bitter W, van Soolingen D, Brosch R, van der Wel N, Peters PJ (2012) ESX-1-mediated translocation to the cytosol controls virulence of mycobacteria. Cell Microbiol 14(8):1287–1298

    Article  CAS  PubMed  Google Scholar 

  192. Houben ENG, Bestebroer J, Ummels R, Wilson L, Piersma SR, Jiménez CR, Ottenhoff THM, Luirink J, Bitter W (2012) Composition of the type VII secretion system membrane complex. Mol Microbiol 86(2):472–484

    Article  CAS  PubMed  Google Scholar 

  193. Kinhikar AG, Verma I, Chandra D, Singh KK, Weldingh K, Andersen P, Hsu T, Jacobs WR Jr, Laal S (2010) Potential role for ESAT6 in dissemination of M. tuberculosis via human lung epithelial cells. Mol Microbiol 75(1):92–106

    Article  CAS  PubMed  Google Scholar 

  194. Lou Y, Rybniker J, Sala C, Cole ST (2016) EspC forms a filamentous structure in the cell envelope of Mycobacterium tuberculosis and impacts ESX-1 secretion. Mol Microbiol 103(1):26–38

    Article  PubMed  CAS  Google Scholar 

  195. Demangel C, Brodin P, Cockle PJ, Brosch R, Majlessi L, Leclerc C, Cole ST (2004) Cell envelope protein PPE68 contributes to Mycobacterium tuberculosis RD1 immunogenicity independently of a 10-Kilodalton culture filtrate protein and ESAT-6. Infect Immun 72(4):2170–2176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Manzanillo PS, Ayres JS, Watson RO, Collins AC, Souza G, Rae CS, Schneider DS, Nakamura K, Shiloh MU, Cox JS (2013) The ubiquitin ligase parkin mediates resistance to intracellular pathogens. Nature 501(7468):512–516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Watson RO, Manzanillo PS, Cox JS (2012) Extracellular M. tuberculosis DNA targets bacteria for autophagy by activating the host DNA-sensing pathway. Cell 150(4):803–815

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Vance RE, Isberg RR, Portnoy DA (2009) Patterns of pathogenesis: discrimination of pathogenic and nonpathogenic microbes by the innate immune system. Cell Host Microbe 6(1):10–21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Gutierrez MG, Master SS, Singh SB, Taylor GA, Colombo MI, Deretic V (2004) Autophagy is a defense mechanism inhibiting BCG and Mycobacterium tuberculosis survival in infected macrophages. Cell 119(6):753–766

    Article  CAS  PubMed  Google Scholar 

  200. Delgado MA, Deretic V (2009) Toll-like receptors in control of immunological autophagy. Cell Death Differ 16(7):976–983

    Article  CAS  PubMed  Google Scholar 

  201. Liu PT, Stenger S, Tang DH, Modlin RL (2007) Cutting edge: vitamin D-mediated human antimicrobial activity against Mycobacterium tuberculosis is dependent on the induction of cathelicidin. J Immunol 179(4):2060–2063

    Article  CAS  PubMed  Google Scholar 

  202. Shin D-M, Yuk J-M, Lee H-M, Lee S-H, Son JW, Harding CV, Kim J-M, Modlin RL, Jo E-K (2010) Mycobacterial lipoprotein activates autophagy via TLR2/1/CD14 and a functional vitamin D receptor signalling. Cell Microbiol 12(11):1648–1665

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Manzanillo PS, Shiloh MU, Portnoy DA, Cox JS (2012) Mycobacterium tuberculosis activates the DNA-dependent cytosolic surveillance pathway within macrophages. Cell Host Microbe 11(5):469–480

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Schmeisser H, Fey SB, Horowitz J, Fischer ER, Balinsky CA, Miyake K, Bekisz J, Snow AL, Zoon KC (2013) Type I interferons induce autophagy in certain human cancer cell lines. Autophagy 9(5):683–696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Romagnoli A, Etna MP, Giacomini E, Pardini M, Remoli ME, Corazzari M, Falasca L, Goletti D, Gafa V, Simeone R, Delogu G, Piacentini M, Brosch R, Fimia GM, Coccia EM (2012) ESX-1 dependent impairment of autophagic flux by Mycobacterium tuberculosis in human dendritic cells. Autophagy 8(9):1357–1370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Moraco AH, Kornfeld H (2014) Cell death and autophagy in tuberculosis. Semin Immunol 26(6):497–511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Lammas DA, Stober C, Harvey CJ, Kendrick N, Panchalingam S, Kumararatne DS (1997) ATP-induced killing of mycobacteria by human macrophages is mediated by purinergic P2Z(P2X7) receptors. Immunity 7(3):433–444

    Article  CAS  PubMed  Google Scholar 

  208. Amaral EP, Lasunskaia EB, D'Império-Lima MR (2016) Innate immunity in tuberculosis: how the sensing of mycobacteria and tissue damage modulates macrophage death. Microbes Infect 18(1):11–20

    Article  CAS  PubMed  Google Scholar 

  209. Petit-Jentreau L, Tailleux L, Coombes JL (2017) Purinergic signaling: a common path in the macrophage response against Mycobacterium tuberculosis and toxoplasma gondii. Front Cell Infect Microbiol 7:347

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  210. Parandhaman DK, Narayanan S (2014) Cell death paradigms in the pathogenesis of Mycobacterium tuberculosis infection. Front Cell Infect Microbiol 4:31

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  211. Velmurugan K, Chen B, Miller JL, Azogue S, Gurses S, Hsu T, Glickman M, Jacobs WR Jr, Porcelli SA, Briken V (2007) Mycobacterium tuberculosis nuoG is a virulence gene that inhibits apoptosis of infected host cells. PLoS Pathog 3(7):e110

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  212. Hinchey J, Lee S, Jeon BY, Basaraba RJ, Venkataswamy MM, Chen B, Chan J, Braunstein M, Orme IM, Derrick SC, Morris SL, Jacobs WR Jr, Porcelli SA (2007) Enhanced priming of adaptive immunity by a proapoptotic mutant of Mycobacterium tuberculosis. J Clin Invest 117(8):2279–2288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Briken V, Miller JL (2008) Living on the edge: inhibition of host cell apoptosis by Mycobacterium tuberculosis. Future Microbiol 3(4):415–422

    Article  CAS  PubMed  Google Scholar 

  214. Miller JL, Velmurugan K, Cowan MJ, Briken V (2010) The type I NADH dehydrogenase of Mycobacterium tuberculosis counters phagosomal NOX2 activity to inhibit TNF-alpha-mediated host cell apoptosis. PLoS Pathog 6(4):e1000864

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  215. Srinivasan L, Gurses SA, Hurley BE, Miller JL, Karakousis PC, Briken V (2016) Identification of a transcription factor that regulates host cell exit and virulence of Mycobacterium tuberculosis. PLoS Pathog 12(5):e1005652

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  216. Chen M, Gan H, Remold HG (2006) A mechanism of virulence: virulent Mycobacterium tuberculosis strain H37Rv, but not attenuated H37Ra, causes significant mitochondrial inner membrane disruption in macrophages leading to necrosis. J Immunol 176(6):3707–3716

    Article  CAS  PubMed  Google Scholar 

  217. Divangahi M, Chen M, Gan H, Desjardins D, Hickman TT, Lee DM, Fortune S, Behar SM, Remold HG (2009) Mycobacterium tuberculosis evades macrophage defenses by inhibiting plasma membrane repair. Nat Immunol 10(8):899–906

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Miller JL, Velmurugan K, Cowan MJ, Briken V (2010) The type I NADH dehydrogenase of Mycobacterium tuberculosis counters phagosomal NOX2 activity to inhibit TNF-α-mediated host cell apoptosis. PLoS Pathog 6(4):e1000864

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  219. Gengenbacher M, Kaufmann SHE (2012) Mycobacterium tuberculosis: success through dormancy. FEMS Microbiol Rev 36(3):514–532

    Article  CAS  PubMed  Google Scholar 

  220. Doddam SN, Peddireddy V, Ahmed N (2017) Mycobacterium tuberculosis DosR regulon gene Rv2004c encodes a novel antigen with pro-inflammatory functions and potential diagnostic application for detection of latent tuberculosis. Front Immunol 8:712

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  221. Chen Z, Hu Y, Cumming BM, Lu P, Feng L, Deng J, Steyn AJC, Chen S (2016) Mycobacterial WhiB6 differentially regulates ESX-1 and the dos regulon to modulate granuloma formation and virulence in zebrafish. Cell Rep 16(9):2512–2524

    Article  CAS  PubMed  Google Scholar 

  222. Sivaramakrishnan S, Ortiz de Montellano P (2013) The DosS-DosT/DosR Mycobacterial sensor system. Biosensors 3(3):259–282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Hu Y, Movahedzadeh F, Stoker NG, Coates ARM (2006) Deletion of the Mycobacterium tuberculosis -crystallin-like hspX gene causes increased bacterial growth in vivo. Infect Immun 74(2):861–868

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Kumar A, Deshane JS, Crossman DK, Bolisetty S, Yan B-S, Kramnik I, Agarwal A, Steyn AJC (2008) Heme Oxygenase-1-derived carbon monoxide induces the Mycobacterium tuberculosis dormancy regulon. J Biol Chem 283(26):18032–18039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. Vandal OH, Pierini LM, Schnappinger D, Nathan CF, Ehrt S (2008) A membrane protein preserves intrabacterial pH in intraphagosomal Mycobacterium tuberculosis. Nat Med 14(8):849–854

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. Botella H, Vaubourgeix J, Lee MH, Song N, Xu W, Makinoshima H, Glickman MS, Ehrt S (2017) Mycobacterium tuberculosis protease MarP activates a peptidoglycan hydrolase during acid stress. EMBO J 36(4):536–548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Rajesh Jayachandran and Liem Nguyen for the critical reading of the manuscript.

Funding

Work in our laboratories is funded by the Swiss National Science Foundation, the Gebert Ruff Foundation, the Optimus Foundation, the Canton of Basel (to JP), the European Molecular Biology Organization (EMBO, through a Long Term Fellowship awarded to SBDG), and DST-SERB (YSS/2015/000471) and DBT (BT/RLF/Re-entry/33/2014) to SBDG.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Somdeb BoseDasgupta or Jean Pieters.

Additional information

This article is a contribution to the special issue on Professional and Nonprofessional Phagocytes and Diseases - Guest Editor: Toru Miyazaki

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

BoseDasgupta, S., Pieters, J. Macrophage-microbe interaction: lessons learned from the pathogen Mycobacterium tuberculosis. Semin Immunopathol 40, 577–591 (2018). https://doi.org/10.1007/s00281-018-0710-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00281-018-0710-0

Keywords

Navigation