Skip to main content

Advertisement

Log in

Preeclampsia and health risks later in life: an immunological link

  • Review
  • Published:
Seminars in Immunopathology Aims and scope Submit manuscript

Abstract

Pregnancy represents a period of physiological stress, and although this stress is experienced for a very modest portion of life, it is now recognized as a window to women’s future health, often by unmasking predispositions to conditions that only become symptomatic later in life. In normal pregnancy, the mother experiences mild metabolic syndrome-like condition through week 20 of gestation. A pronounced phenotype of metabolic syndrome may program pregnancy complications such as preeclampsia. Preeclampsia is a serious complication with a myriad of manifestations for mother and offspring. This pregnancy syndrome is a polygenic disease and has been now linked to higher incidence of cardiovascular disease, diabetes, and several other disorders associated with vulnerable organs. Furthermore, the offspring born to preeclamptic mothers also exhibit an elevated risk of cardiovascular disease, stroke, and mental disorders during adulthood. This suggests that preeclampsia not only exposes the mother and the fetus to complications during pregnancy but also programs chronic diseases in later life. The etiology of preeclampsia is thought to be primarily associated with poor placentation and entails excessive maternal inflammation and endothelial dysfunction. It is well established now that the maternal immune system and the placenta are involved in a highly choreographed cross-talk that underlies adequate spiral artery remodeling required for uteroplacental perfusion and free flow of nutrients to the fetus. Since normal pregnancy is associated with a sequence of events represented by temporal events of inflammation (implantation), anti-inflammation (gestation), and inflammation (parturition), it is quite possible that unscheduled alterations in these regulatory responses may lead to pathologic consequences. Although it is not clear whether immunological alterations occur early in pregnancy, it is proposed that dysregulated systemic and placental immunity contribute to impaired angiogenesis and the onset of preeclampsia. This review will focus on important aspects of the immune system that coordinate with placental dysfunction to program preeclampsia and influence health in later life.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Redman CW, Sargent IL (2005) Latest advances in understanding preeclampsia. Science 308(5728):1592–1594

    Article  CAS  PubMed  Google Scholar 

  2. Chaiworapongsa T, Chaemsaithong P, Yeo L, Romero R (2014) Pre-eclampsia part 1: current understanding of its pathophysiology. Nat Rev Nephrol 10(8):466–480

    Article  CAS  PubMed  Google Scholar 

  3. Venkatesha S, Toporsian M, Lam C, Hanai J, Mammoto T, Kim YM et al (2006) Soluble endoglin contributes to the pathogenesis of preeclampsia. Nat Med 12:642–649

    Article  CAS  PubMed  Google Scholar 

  4. Steegers EA, von Dadelszen P, Duvekot JJ, Pijnenborg R (2010) Pre-eclampsia. Lancet 376(9741):631–644

    Article  PubMed  Google Scholar 

  5. Hod T, Cerdeira AS, Karumanchi SA (2015) Molecular Mechanisms of Preeclampsia. Cold Spring Harb Perspect Med 5(10). doi:10.1101/cshperspect.a023473

  6. Roberts JM, Hubel CA (1999) Is oxidative stress the link in the two-stage model of pre-eclampsia? Lancet 354(9181):788–789

    Article  CAS  PubMed  Google Scholar 

  7. Roberts JM, Bell MJ (2013) If we know so much about preeclampsia, why haven’t we cured the disease? J Reprod Immunol 99(1-2):1–9

    Article  PubMed  PubMed Central  Google Scholar 

  8. Kalkunte S, Lai Z, Norris WE, Pietras LA, Tewari N, Boij R, Neubeck S, Markert UR, Sharma S (2009) Novel approaches for mechanistic understanding and predicting preeclampsia. J Reprod Immunol 83(1-2):134–138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Staff AC, Benton SJ, von Dadelszen P, Roberts JM, Taylor RN, Powers RW, Charnock-Jones DS, Redman CW (2013) Redefining preeclampsia using placenta-derived biomarkers. Hypertension 61(5):932–942

    Article  CAS  PubMed  Google Scholar 

  10. Redman CW (2011) Pre-eclampsia: Definitions, paternal contributions and a four stage model. Pregnancy Hypertens 1(1):2–5

    CAS  PubMed  Google Scholar 

  11. Harmon AC, Cornelius DC, Amaral LM, Faulkner JL, Cunningham MW Jr, Wallace K, LaMarca B (2016) The role of inflammation in the pathology of preeclampsia. Clin Sci (Lond) 130(6):409–419

    Article  Google Scholar 

  12. Laresgoiti-Servitje E (2013) A leading role for the immune system in the pathophysiology of preeclampsia. J Leukoc Biol 94(2):247–257

    Article  CAS  PubMed  Google Scholar 

  13. Staff AC, Johnsen GM, Dechend R, Redman CW (2014) Preeclampsia and uteroplacental acute atherosis: immune and inflammatory factors. J Reprod Immunol 101–102:120–126

    Article  PubMed  Google Scholar 

  14. Hsu P, Nanan RK (2014) Innate and adaptive immune interactions at the fetal-maternal interface in healthy human pregnancy and pre-eclampsia. Front Immunol 5:125

    Article  PubMed  PubMed Central  Google Scholar 

  15. Redman CW, Sargent IL (2010) Immunology of pre-eclampsia. Am J Reprod Immunol 63(6):534–543

    Article  CAS  PubMed  Google Scholar 

  16. Sharma S, Norris WE, Kalkunte S (2010) Beyond the threshold: an etiological bridge between hypoxia and immunity in preeclampsia. J Reprod Immunol 85(1):112–116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Lai Z, Kalkunte S, Sharma S (2011) A critical role of interleukin-10 in modulating hypoxia-induced preeclampsia-like disease in mice. Hypertension 57(3):505–514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Redman CW, Sacks GP, Sargent IL (1999) Preeclampsia: an excessive maternal inflammatory response to pregnancy. Am J Obstet Gynecol 180(2 Pt 1):499–506

    Article  CAS  PubMed  Google Scholar 

  19. Ahn H, Park J, Gilman-Sachs A, Kwak-Kim J (2011) Immunologic characteristics of preeclampsia, a comprehensive review. Am J Reprod Immunol 65(4):377–394

    Article  CAS  PubMed  Google Scholar 

  20. Saito S, Shiozaki A, Nakashima A, Sakai M, Sasaki Y (2007) The role of the immune system in preeclampsia. Mol Aspects Med 28(2):192–209

    Article  CAS  PubMed  Google Scholar 

  21. Mor G, Abrahams VM (2003) Potential role of macrophages as immunoregulators in pregnancy. Reprod Biol Endocrinol 1:119

    Article  PubMed  PubMed Central  Google Scholar 

  22. Przbyl L, Haase N, Golic M, Rugor J, Solano ME, Arck PC, et al (2016) CD74-downregulation of placental macrophage-trophoblastic interactions in preeclampsia. Circ Res

  23. Rowe JH, Ertelt JM, Xin L, Way SS (2012) Pregnancy imprints regulatory memory that sustains anergy to fetal antigen. Nature 490(7418):102–106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Sharma S (2014) Natural killer cells and regulatory T cells in early pregnancy loss. Int J Dev Biol 58(2-4):219–229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Matthiesen L, Kalkunte S, Sharma S (2012) Multiple pregnancy failures: an immunological paradigm. Am J Reprod Immunol 67(4):334–340

    Article  CAS  PubMed  Google Scholar 

  26. Nevers T, Kalkunte S, Sharma S (2011) Uterine Regulatory T cells, IL-10 and hypertension. Am J Reprod Immunol 66(Suppl 1):88–92

    Article  PubMed  PubMed Central  Google Scholar 

  27. Norris W, Nevers T, Sharma S, Kalkunte S (2011) Review: hCG, preeclampsia and regulatory T cells. Placenta 32(Suppl 2):S182–S185

    Article  PubMed  PubMed Central  Google Scholar 

  28. Carlino C, Stabile H, Morrone S, Bulla R, Soriani A, Agostinis C et al (2008) Recruitment of circulating NK cells through decidual tissues: a possible mechanism controlling NK cell accumulation in the uterus during early pregnancy. Blood 111(6):3108–3115

    Article  CAS  PubMed  Google Scholar 

  29. Manaster I, Mandelboim O (2010) The unique properties of uterine NK cells. Am J Reprod Immunol 63:434–444

    Article  CAS  PubMed  Google Scholar 

  30. Keskin DB, Allan DS, Rybalov B, Andzelm MM, Stern JN, Kopcow HD, Koopman LA, Strominger JL (2007) TGFbeta promotes conversion of CD16+ peripheral blood NK cells into CD16- NK cells with similarities to decidual NK cells. Proc Natl Acad Sci U S A 104(9):3378–3383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. King A (2000) Uterine leukocytes and decidualization. Hum Reprod Update 6(1):28–36

    Article  CAS  PubMed  Google Scholar 

  32. Spornitz UM (1992) The functional morphology of the human endometrium and decidua. Adv Anat Embryol Cell Biol 124:1–99

    Article  CAS  PubMed  Google Scholar 

  33. Lash GE, Otun HA, Innes BA, Kirkley M, De Oliveira L, Searle RF, Robson SC, Bulmer JN (2006) Interferon-{gamma} inhibits extravillous trophoblast cell invasion by a mechanism that involves both changes in apoptosis and protease levels. FASEB J 20:2512–2518

    Article  CAS  PubMed  Google Scholar 

  34. Hanna J, Goldman-Wohl D, Hamani Y, Avraham I, Greenfield C, Natanson-Yaron S, Prus D, Cohen-Daniel L, Arnon TI, Manaster I, Gazit R, Yutkin V, Benharroch D, Porgador A, Keshet E, Yagel S, Mandelboim O (2006) Decidual NK cells regulate key developmental processes at the human fetal-maternal interface. Nat Med 12(9):1065–1074

    Article  CAS  PubMed  Google Scholar 

  35. Kalkunte S, Chichester CO, Gotsch F, Sentman CL, Romero R, Sharma S (2008) Evolution of non-cytotoxic uterine natural killer cells. Am J Reprod Immunol 59(5):425–432

    Article  PubMed  PubMed Central  Google Scholar 

  36. Kalkunte SS, Mselle TF, Norris WE, Wira CR, Sentman CL, Sharma S (2009) Vascular endothelial growth factor C facilitates immune tolerance and endovascular activity of human uterine NK cells at the maternal-fetal interface. J Immunol 182(7):4085–4092

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Vacca P, Mingari MC, Moretta L (2013) Natural killer cells in human pregnancy. J Reprod Immunol 97(1):14–19

    Article  CAS  PubMed  Google Scholar 

  38. Sargent IL, Borzychowski AM, Redman CW (2006) NK cells and human pregnancy—an inflammatory view. Trends Immunol 27(9):399–404

    Article  CAS  PubMed  Google Scholar 

  39. Goulopoulou S, Matsumoto T, Bomfim GF, Webb RC (2012) Toll-like receptor 9 activation: a novel mechanism linking placenta-derived mitochondrial DNA and vascular dysfunction in pre-eclampsia. Clin Sci (Lond) 123(7):429–435

    Article  CAS  Google Scholar 

  40. Hu Y, Dutz JP, MacCalman CD, Yong P, Tan R, von Dadelszen P (2006) Decidual NK cells alter in vitro first trimester extravillous cytotrophoblast migration: a role for IFN-{gamma}. J Immunol 177:8522–8530

    Article  CAS  PubMed  Google Scholar 

  41. Saito S, Sakai M, Sasaki Y, Tanebe K, Tsuda H, Michimata T (1999) Quantitative analysis of peripheral blood Th0, Th1, Th2 and the Th1:Th2 cell ratio during normal human pregnancy and preeclampsia. Clin Exp Immunol 117(3):550–555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Hiby SE, Walker JJ, O’shaughnessy KM, Redman CW, Carrington M, Trowsdale J, Moffett A (2004) Combinations of maternal KIR and fetal HLA-C genes influence the risk of preeclampsia and reproductive success. J Exp Med 200(8):957–965

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Saito S, Takeda Y, Sakai M, Nakabayahi M, Hayakawa S (2006) The incidence of pre-eclampsia among couples consisting of Japanese women and Caucasian men. J Reprod Immunol 70(1-2):93–98

    Article  PubMed  Google Scholar 

  44. Murphy SP, Fast LD, Hanna NN, Sharma S (2005) Uterine NK cells mediate inflammation-induced fetal demise in IL-10-null mice. J Immunol 175(6):4084–4090

    Article  CAS  PubMed  Google Scholar 

  45. Murphy SP, Hanna NN, Fast LD, Shaw SK, Berg G, Padbury JF, Romero R, Sharma S (2009) Evidence for participation of uterine natural killer cells in the mechanisms responsible for spontaneous preterm labor and delivery. Am J Obstet Gynecol 200(3):308, e1-9

    Article  PubMed  Google Scholar 

  46. Bounds KR, Newell-Rogers MK, Mitchell BM (2015) Four Pathways Involving Innate Immunity in the athogenesis of Preeclampsia. Front Cardiovasc Med 2:20

    Article  PubMed  PubMed Central  Google Scholar 

  47. Bilate AM, Lafaille JJ (2012) Induced CD4(+)Foxp3(+) regulatory T Cells in immune tolerance. Annu Rev Immunol 30:733–758

    Article  CAS  PubMed  Google Scholar 

  48. Wing K, Sakaguchi S (2010) Regulatory T cells exert checks and balances on self tolerance and autoimmunity. Nat Immunol 11(1):7–13

    Article  CAS  PubMed  Google Scholar 

  49. Wood KJ, Sakaguchi S (2003) Regulatory T cells in transplantation tolerance. Nat Rev Immunol 3(3):199–210

    Article  CAS  PubMed  Google Scholar 

  50. Sakaguchi S, Yamaguchi T, Nomura T, Ono M (2008) Regulatory T cells and immune tolerance. Cell 133(5):775–787

    Article  CAS  PubMed  Google Scholar 

  51. Aluvihare VR, Kallikourdis M, Betz AG (2004) Regulatory T cells mediate maternal tolerance to the fetus. Nat Immunol 5(3):266–271

    Article  CAS  PubMed  Google Scholar 

  52. Robertson SA, Guerin LR, Bromfield JJ, Branson KM, Ahlström AC, Care AS (2009) Seminal fluid drives expansion of the CD4+CD25+ T regulatory cell pool and induces tolerance to paternal alloantigens in mice. Biol Reprod 80(5):1036–1045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Somerset DA, Zheng Y, Kilby MD, Sansom DM, Drayson MT (2004) Normal human pregnancy is associated with an elevation in the immune suppressive CD25+ CD4+ regulatory T-cell subset. Immunology 112(1):38–43

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Shima T, Sasaki Y, Itoh M, Nakashima A, Ishii N, Sugamura K, Saito S (2010) Regulatory T cells are necessary for implantation and maintenance of early pregnancy but not late pregnancy in allogeneic mice. J Reprod Immunol 85(2):121–129

    Article  CAS  PubMed  Google Scholar 

  55. Toldi G, Saito S, Shima T et al (2012) The frequency of peripheral blood CD4+ CD25high FoxP3+ and CD4+ CD25- FoxP3+ regulatory T cells in normal pregnancy and pre-eclampsia. Am J Reprod Immunol 68(2):175–180

    Article  CAS  PubMed  Google Scholar 

  56. Tilburgs T, Roelen DL, van der Mast BJ, et al (2006) Differential distribution of CD4(+)CD25(bright) and CD8(+)CD28(-) T-cells in decidua and maternal blood during human pregnancy. Placenta 27 Suppl A: S47–S53

  57. Santner-Nanan B, Peek MJ, Khanam R et al (2009) Systemic increase in the ratio between Foxp3+ and IL-17-producing CD4+ T cells in healthy pregnancy but not in preeclampsia. J Immunol 183(11):7023–7030

    Article  CAS  PubMed  Google Scholar 

  58. Prins JR, Boelens HM, Heimweg J et al (2009) Preeclampsia is associated with lower percentages of regulatory T cells in maternal blood. Hypertens Pregnancy 28(3):300–311

    Article  PubMed  Google Scholar 

  59. Przybyl L, Ibrahim T, Haase N, Golic M, Rugor J, Luft FC, Bendix I, Serdar M, Wallukat G, Staff AC, Müller DN, Hünig T, Felderhoff-Müser U, Herse F, LaMarca B, Dechend R (2015) Regulatory T cells ameliorate intrauterine growth retardation in a transgenic rat model for preeclampsia. Hypertension 65(6):1298–1306

    Article  CAS  PubMed  Google Scholar 

  60. Dekker G (2002) The partner’s role in the etiology of preeclampsia. J Reprod Immunol 57(1-2):203–215

    Article  PubMed  Google Scholar 

  61. Robillard PY, Hulsey TC (1996) Association of pregnancy-induced-hypertension, pre-eclampsia, and eclampsia with duration of sexual cohabitation before conception. Lancet 347(9001):619

    Article  CAS  PubMed  Google Scholar 

  62. Enkhmaa D, Wall D, Mehta PK, Stuart JJ, Rich-Edwards JW, Merz CN, Shufelt C (2016) Preeclampsia and Vascular Function: A Window to Future Cardiovascular Disease Risk. J Womens Health (Larchmt) Jan 18. (in press)

  63. Bellamy L, Casas JP, Hingorani AD, Williams DJ (2007) Pre-eclampsia and risk of cardiovascular disease and cancer in later life: systematic review and meta-analysis. BMJ 335(7627):974

    Article  PubMed  PubMed Central  Google Scholar 

  64. Paauw ND, Luijken K, Franx A, Verhaar MC, Lely AT (2016) Long-term renal and cardiovascular risk after preeclampsia: towards screening and prevention. Clin Sci (Lond) 130(4):239–246

    Article  CAS  Google Scholar 

  65. Tooher J, Thornton C, Makris A, Ogle R, Korda A, Horvath J, Hennessy A (2016) Hypertension in pregnancy and long-term cardiovascular mortality: a retrospective cohort study. Am J Obstet Gynecol 214(6):722

    Article  PubMed  Google Scholar 

  66. Banerjee M, Cruickshank JK (2006) Pregnancy as the prodrome to vascular dysfunction and cardiovascular risk. Nat Clin Pract Cardiovasc Med 3(11):596–603

    Article  CAS  PubMed  Google Scholar 

  67. Cheng SB, Nakashima A, Sharma S (2016) Understanding Pre-Eclampsia Using Alzheimer’s Etiology: An Intriguing Viewpoint. Am J Reprod Immunol 75(3):372–381

    Article  PubMed  Google Scholar 

  68. Staff AC, Dechend R, Pijnenborg R (2010) Learning from the placenta: acute atherosis and vascular remodeling in preeclampsia-novel aspects for atherosclerosis and future cardiovascular health. Hypertension 56(6):1026–1034

    Article  CAS  PubMed  Google Scholar 

  69. Saftlas AF, Rubenstein L, Prater K, Harland KK, Field E, Triche EW (2014) Cumulative exposure to paternal seminal fluid prior to conception and subsequent risk of preeclampsia. J Reprod Immunol 101–102:104–110

    Article  PubMed  Google Scholar 

  70. Lee SM, Romero R, Lee YJ, Park IS, Park CW, Yoon BH (2012) Systemic inflammatory stimulation by microparticles derived from hypoxic trophoblast as a model for inflammatory response in preeclampsia. Am J Obstet Gynecol 207(4):337, e1-8

    Article  PubMed  PubMed Central  Google Scholar 

  71. Marques FK, Campos FM, Sousa LP, Teixeira-Carvalho A, Dusse LM, Gomes KB (2013) Association of microparticles and preeclampsia. Mol Biol Rep 40(7):4553–4559

    Article  CAS  PubMed  Google Scholar 

  72. Chen Y, Huang Y, Jiang R, Teng Y (2012) Syncytiotrophoblast-derived microparticle shedding in early-onset and late-onset severe pre-eclampsia. Int J Gynaecol Obstet 119(3):234–238

    Article  PubMed  Google Scholar 

  73. Lok CA, Van der Post JA, Sturk A, Sargent IL, Nieuwland R (2011) The functions of microparticles in preeclampsia. Pregnancy Hypertens 1(1):59–65

    PubMed  Google Scholar 

  74. Germain SJ, Sacks GP, Soorana SR, Sargent IL, Redman CW (2007) Systemic inflammatory priming in normal pregnancy and preeclampsia: The role of circulating syncytiotrophoblast microparticles. J Immunol 178:5949–5956

    Article  CAS  PubMed  Google Scholar 

  75. Redman CW, Sargent IL (2007) Microparticles and immunomodulation in pregnancy and pre-eclampsia. J Reprod Immunol 76(1-2):61–67

    Article  CAS  PubMed  Google Scholar 

  76. Goswami D, Tannetta DS, Magee LA, Fuchisawa A, Redman CW, Sargent IL et al (2006) Excess syncytiotrophoblast microparticle shedding is a feature of early-onset pre-eclampsia but not normotensive intrauterine growth restriction. Placenta 27:56e61

    Article  Google Scholar 

  77. Guller S (2009) Role of the syncytium in placenta-mediated complications of preeclampsia. Thromb Res 124(4):389–392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Mele J, Muralimanoharan S, Maloyan A, Myatt L (2014) Impaired mitochondrial function in human placenta with increased maternal adiposity. Am J Physiol Endocrinol Metab 307(5):E419–E425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Colleoni F, Lattuada D, Garretto A, Massari M, Mando C, Somigliana E, Cetin I (2010) Maternal blood mitochondrial DNA content during normal and intrauterine growth restricted (IUGR) pregnancy. Am J Obstet Gynecol 203:365, e1–365.e6

    Article  PubMed  Google Scholar 

  80. Zhang Q, Raoof M, ChenY SY, Sursal T, Junger W, Brohi K, Itagaki K, Hauser CJ (2010) Circulating mitochondrial DAMPs cause inflammatory responses to injury. Nature 464:104–107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Kuck JL, Obiako BO, Gorodnya OM, Pastukh VM, Kua J, Simmons JD, Gillespie MN (2015) Mitochondrial DNA damage-associated molecular patterns mediate a feed-forward cycle of bacteria-induced vascular injury in perfused rat lungs. Am J Physiol Lung Cell Mol Physiol 308(10):L1078–L1085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Hartley JD, Ferguson BJ, Moffett A (2015) The role of shed placental DNA in the systemic inflammatory syndrome of preeclampsia. Am J Obstet Gynecol 213(3):268–277

    Article  CAS  PubMed  Google Scholar 

  83. Lo YM, Tein MS, Lau TK et al (1998) Quantitative analysis of fetal DNA in maternal plasma and serum: implications for noninvasive prenatal diagnosis. Am J Hum Genet 62:768–775

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Scharfe-Nugent A, Corr SC, Carpenter SB et al (2012) TLR9 provokes inflammation in response to fetal DNA: mechanism for fetal loss in preterm birth and preeclampsia. J Immunol 188:5706–5712

    Article  CAS  PubMed  Google Scholar 

  85. Kalkunte SS, Neubeck S, Norris WE, Cheng SB, Kostadinov S, Vu Hoang D, Ahmed A, von Eggeling F, Shaikh Z, Padbury J, Berg G, Olofsson A, Markert UR, Sharma S (2013) Transthyretin is dysregulated in preeclampsia, and its native form prevents the onset of disease in a preclinical mouse model. Am J Pathol 183(5):1425–1436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Buhimschi IA, Nayeri UA, Zhao G, Shook LL, Pensalfini A, Funai EF, Bernstein IM, Glabe CG, Buhimschi CS (2014) Protein misfolding, congophilia, oligomerization, and defective amyloid processing in preeclampsia. Sci Transl Med 6(245):245ra92

    Article  PubMed  Google Scholar 

  87. Aguzzi A, O’Connor T (2010) Protein aggregation diseases: pathogenicity and therapeutic perspectives. NatRev Drug Discov 9(3):237–248

    Article  CAS  Google Scholar 

  88. Ross CA, Poirier MA (2004) Protein aggregation and neurodegenerative diseases. Nat Med 10:S10–S17

    Article  PubMed  Google Scholar 

  89. Sousa MM, Yan SD, Stern D, Saraiva MJ (2000) Interaction of the receptor for advanced glycation end products (RAGE) with transthyretin triggers nuclear transcription factor kB (NF-kB) activation. Lab Invest 80(7):1101–1110

    Article  CAS  PubMed  Google Scholar 

  90. Fong VH, Vieira A (2013) Transthyretin aggregates induce production of reactive nitrogen species. Neurodegener Dis 11(1):42–48

    Article  PubMed  Google Scholar 

  91. Di Carlo M (2010) Beta amyloid peptide: from different aggregation forms to the activation of differentbiochemical pathways. Eur Biophys J 39(6):877–888

    Article  PubMed  Google Scholar 

  92. Gonzalez-Velasquez F, Reed JW, Fuseler JW, Matherly EE, Kotarek JA, Soto-Ortega DD, Moss MA (2011) Activation of brain endothelium by soluble aggregates of the amyloid-β protein involves nuclear factor-kB. Curr Alzheimer Res 8(1):81–94

    Article  CAS  PubMed  Google Scholar 

  93. Goldeck D, Witkowski JM, Fülop T, Pawelec G (2016) Peripheral immune signatures in Alzheimer Disease. Curr Alzheimer Res 13:739–749

    Article  CAS  PubMed  Google Scholar 

  94. Chambers JC, Fusi L, Iqbal M et al (2001) Association of maternal endothelial dysfunction with preeclampsia. JAMA 285:1607–1612

    Article  CAS  PubMed  Google Scholar 

  95. Barden AE, Beilin LJ, Richie J et al (2002) Does a predisposition to the metabolic syndrome sensitizewomen to develop pre-eclampsia? J Hypertens 17:1307–1315

    Article  Google Scholar 

  96. Laivuori H, Tikkanen MJ, Ylikorkala O (1996) Hyperinsulinaemia 17 years after preeclamptic firstpregnancy. J Clin Endocrinol Metab 81:2908–2911

    CAS  PubMed  Google Scholar 

  97. Sattar N, Ramsay J, Crawford L et al (2003) Classic and novel risk factor parameters in women with ahistory of preeclampsia. Hypertension 42:39–42

    Article  CAS  PubMed  Google Scholar 

  98. Kvehaugen AS, Dechend R, Ramstad HB, Triosi R et al (2011) Endothelial funct6ion and circulatingbiomarkers are disturbed in women and children after preeclampsia. Hypertension 58:63–69

    Article  CAS  PubMed  Google Scholar 

  99. Kumar D, Kumar V, Choi SH, Washicosky KJ et al (2016) Amyloid-β peptide protects against microbial infection in mouse and worm models of Alzheimer’s disease. Sci Trans Med 8:340ra72, 1-15

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported in part by a grant from NIH P30 GM114750, Brown University DEANS Award, and Constance Howes Award for Women’s Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Surendra Sharma.

Additional information

This article is a contribution to the special issue on Fetomaternal Cross Talk and Its Effect on Pregnancy Maintenance, Maternal and Offspring Health - Guest Editor: Petra Arck

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, SB., Sharma, S. Preeclampsia and health risks later in life: an immunological link. Semin Immunopathol 38, 699–708 (2016). https://doi.org/10.1007/s00281-016-0579-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00281-016-0579-8

Keywords

Navigation