Skip to main content

Advertisement

Log in

Association of microparticles and preeclampsia

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Preeclampsia (PE) is a syndrome characterized by poor placentation and endothelial dysfunction. The diagnosis for this syndrome is based in hypertension and proteinuria presented after the 20th week of pregnancy. Despite intensive research, PE is still one of the leading causes of maternal mortality, although reliable screening tests or effective treatments of this disease have yet to be proposed. Microparticles (MPs) are small vesicles released after cell activation or apoptosis, which contain membrane proteins that are characteristic of the original parent cell. MPs have been proven to play key role in thrombosis, inflammation, and angiogenesis, as well as to mediate cell–cell communication by transferring mRNAs and microRNA from the cell of origin to target cells. Placenta-derived syncytiotrophoblast MPs are one of the most increased MPs during PE and may play an important role in the pathogenesis of this syndrome. Therefore, a better overall understanding of the role of MPs in PE may be useful for new clinical diagnoses and therapeutic approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Trogstad L, Magnus P, Stoltenberg C (2011) Pre-eclampsia: risk factors and causal models. Best Pract Res Clin Obstet Gynaecol 25:329–342

    Article  PubMed  Google Scholar 

  2. VanWijk MJ, Boer K, Berckmans RJ, Meijers JC, van der Post JA, Sturk A et al (2002) Enhanced coagulation activation in preeclampsia: the role of APC resistance, microparticles and other plasma constituents. Thromb Haemost 88:415–420

    PubMed  CAS  Google Scholar 

  3. Schjetlein R, Abdelnoor M, Haugen G, Husby H, Sandset PM, Wosloff M (1999) Hemostatic variables as independent predictors for fetal growth retardation in preeclampsia. Acta Obstet Gynecol Scand 78:191–197

    Article  PubMed  CAS  Google Scholar 

  4. Higgins JR, Walshe JJ, Darling MR, Norris L, Bonnar J (1998) Hemostasis in the uteroplacental and peripheral circulations in normotensive and preeclamptic pregnancies. Am J Obstet Gynecol 179:520–526

    Article  PubMed  CAS  Google Scholar 

  5. Weiner CP, Brandt J (1977) Plasma antithrombin III activity: an aid in the diagnosis of preeclampsia–eclampsia. Lancet 2:1249–1252

    Google Scholar 

  6. Rákóczi I, Tallián F, Bagdány S, Gáti I (1979) Platelet life-span in normal pregnancy and pre-eclampsia as determined by a non-radioisotope technique. Thromb Res 15:553–556

    Article  PubMed  Google Scholar 

  7. Redman CW, Bonnar J, Beilen L (1978) Early platelet consumption in preeclampsia. Br Med J 1:467–469

    Article  PubMed  CAS  Google Scholar 

  8. Huppertz B (2008) Placental origins of preeclampsia: challenging the current hypothesis. Hypertension 51:970–975

    Article  PubMed  CAS  Google Scholar 

  9. Burton G, Yung HW, Cindrova-Davies T, Charnock-Jonesb DS (2009) Placental endoplasmic reticulum stress and oxidative stress in the pathophysiology of unexplained intrauterine growth restriction and early onset preeclampsia. Placenta 30:43–48

    Article  Google Scholar 

  10. Rodie VA, Freeman DJ, Sattar N, Greer IA (2004) Pre-eclampsia and cardiovascular disease: metabolic syndrome of pregnancy? Atherosclerosis 175:189–202

    Article  PubMed  CAS  Google Scholar 

  11. Coomarasamy A, Honest H, Papaionnou S, Gee H, Kahn KS (2003) Aspirin for prevention of preeclampsia: a systemic review. Obstet Gynecol 101:1319–1332

    Article  PubMed  CAS  Google Scholar 

  12. Wolf P (1967) The nature and significance of platelet products in human plasma. Br J Haematol 13:269–288

    Article  PubMed  CAS  Google Scholar 

  13. Mause SF, Weber C (2010) Microparticles: protagonists of a novel communication network for intercellular information exchange. Circ Res 107:1047–1057

    Article  PubMed  CAS  Google Scholar 

  14. Meziani F, Tesse A, Andriantsitohaina R (2008) Microparticles are vectors of paradoxical information in vascular cells including the endothelium: role in health and diseases. Pharmacol Rep 60:75–84

    PubMed  CAS  Google Scholar 

  15. Chironi GN, Boulanger CM, Simon A, George FD, Freyssinet JM, Tegui A (2009) Endothelial microparticles in diseases. Cell Tissue Res 335:143–151

    Article  PubMed  Google Scholar 

  16. Boulanger CM, Amabile N, Tedgui A (2006) Circulating microparticles: a potential prognostic marker for atherosclerotic vascular disease. Hypertension 48:180–186

    Article  PubMed  CAS  Google Scholar 

  17. Tan KT, Lip GY (2005) The potential role of platelet microparticles in atherosclerosis. Thromb Haemost 94:488–492

    PubMed  CAS  Google Scholar 

  18. VanWijk MJ, Nieuwland R, Boer K, Van der Post JAM, VanBavel E, Sturk A (2002) Microparticle subpopulations are increased in preeclampsia: possible involvement in vascular dysfunction? Am J Obstet Gynecol 187:450–456

    Article  PubMed  Google Scholar 

  19. Dey-Hazra E, Hertel B, Kirsch T, Woywodt A, Lovric S, Haller H et al (2010) Detection of circulating microparticles by cytometry: influence of centrifugation, filtration of buffer, and freezing. Vasc Health Risk Manag 6:1125–1133

    PubMed  Google Scholar 

  20. Hayon Y, Dashevsky O, Shai E, Brill A, Varon D, Leker RR (2012) Platelet microparticles induce angiogenesis and neurogenesis after cerebral ischemia. Curr Neurovasc Res 9:185–192

    Article  PubMed  CAS  Google Scholar 

  21. Martinez MC, Andriantsitohaina R (2011) Microparticles in angiogenesis: therapeutic potential. Circ Res 109:110–119

    Article  PubMed  CAS  Google Scholar 

  22. Orozco AF, Jorgez CJ, Horne C, Marquez-Do A, Chapman MR, Rodgers JR et al (2008) Membrane protected apoptotic trophoblast microparticles contain nucleic acids. Am J Pathol 173:1595–1608

    Article  PubMed  CAS  Google Scholar 

  23. Barry OP, Pratico D, Lawson JA, Fitzgerald GA (1997) Transcellular activation of platelets and endothelial cells by bioactive lipids in platelets microparticles. J Clin Invest 99:2118–2127

    Article  PubMed  CAS  Google Scholar 

  24. Nomura S, Tandon NN, Nakamura T, Cone J, Fukuhara S, Kambayashi J (2001) High-shear-stress-induced activation of platelets and microparticles enhances expression of cell adhesion molecules in THP-1 and endothelial cells. Atherosclerosis 158:277–287

    Article  PubMed  CAS  Google Scholar 

  25. Han KH, Hong KH, Park JH, Ko J, Kang DH, Choi KJ et al (2004) C-reactive protein promotes monocyte chemoattractant protein-1-mediated chemotaxis through upregulating CC chemokine receptor 2 expression in human monocytes. Circulation 109:2566–2569

    Article  PubMed  CAS  Google Scholar 

  26. Mesri M, Altieri DC (1998) Endothelial cell activation by leukocyte microparticles. J Immunol 161:4382–4387

    PubMed  CAS  Google Scholar 

  27. Bizios R, Lai LC, Cooper JA, Del Vecchio PJ, Malik AB (1988) Thrombin-induced adherence of neutrophils to cultured endothelial monolayers: increased endothelial adhesiveness. J Cell Physiol 134:275–280

    Article  PubMed  CAS  Google Scholar 

  28. Owens A, Mackman N (2011) Microparticles in hemostasis and thrombosis. Circ Res 108:1284–1297

    Article  PubMed  CAS  Google Scholar 

  29. Bach R (2006) Tissue factor encryption. Arterioscler Thromb Vasc Biol 26:456–461

    Article  PubMed  CAS  Google Scholar 

  30. Bajaj MS, Ghosh M, Bajaj SP (2007) Fibronectin-adherent monocytes express tissue factor and tissue factor pathway inhibitor whereas endotoxin-stimulated monocytes primarily express tissue factor: physiologic and pathologic implications. J Thromb Haemost 5:1493–1499

    Article  PubMed  CAS  Google Scholar 

  31. Solovey A, Kollander R, Shet A (2004) Endothelial cell expression of tissue factor in sickle mice is augmented by hypoxia/reoxygenation and inhibited by lovastatin. Blood 104:840–846

    Article  PubMed  CAS  Google Scholar 

  32. Sibai B, Dekker G, Kupferminc M (2005) Pre-eclampsia. Lancet 365:785–795

    PubMed  Google Scholar 

  33. Szaba FM, Smiley ST (2002) Roles for thrombin and fibrinogen in cytokine/chemokine production and macrophage adhesion in vivo. Blood 99:1053–1059

    Article  PubMed  CAS  Google Scholar 

  34. Walter JJ (2000) Pre-eclampsia. Lancet 356:1260–1265

    Article  Google Scholar 

  35. Roberts JM, Lain KY (2002) Recent insights into the pathogenesis of pre-eclampsia. Placenta 23:359–372

    Article  PubMed  CAS  Google Scholar 

  36. Redman CW, Sargent IL (2008) Circulating microparticles in normal pregnancy and pre-eclampsia. Placenta 29:73–77

    Article  Google Scholar 

  37. Meziani F, Tesse A, David E, Martinez CM, Wangsteen R, Schneider F et al (2006) Shed membrane particles from preeclamptic women generate vascular wall inflammation and blunt vascular contractility. Am J Pathol 169:1473–1483

    Article  PubMed  CAS  Google Scholar 

  38. Lock CA, Nieuwland R, Sturk A, Hau CM, Boer K, Vanbavel E (2007) Microparticle-associated P-selectin reflects platelet activation in preeclampsia. Platelets 18:68–72

    Article  Google Scholar 

  39. Tesse A, Meziani F, David E (2007) Microparticles from preeclamptic women induce vascular hyporeactivity in vessels from pregnant mice through an overproduction of NO. Am J Physiol Heart Circ Physiol 293:520–525

    Article  Google Scholar 

  40. Guller S, Tang Z, Ma YY, Di Santo S, Sager R, Schneider H (2011) Protein composition of microparticles shed from human placenta during placental perfusion: potential role in angiogenesis and fibrinolysis in preeclampsia. Placenta 32:63–69

    Article  PubMed  CAS  Google Scholar 

  41. Kupferminc MJ, Fait G, Many A, Lessing JB, Yair D, Bar-Am A et al (2001) Low molecular weight heparin for the prevention of obstetric complications in women with thrombophilia. Hypertens Pregnancy 20:35–44

    PubMed  CAS  Google Scholar 

  42. Paternoster DM, Fantinato S, Manganelli F, Nicolini U, Milani M, Girolami A (2004) Recent progress in the therapeutic management of pre-eclampsia. Expert Opin Pharmacother 5:2233–2239

    Article  PubMed  CAS  Google Scholar 

  43. González-Quintero VH, Smarkusky LP, Jiménez JJ (2004) Elevated plasma endothelial microparticles: preeclampsia versus gestational hypertension. Am J Obstet Gynecol 191:1418–1424

    Article  PubMed  Google Scholar 

  44. Austgulen R, Lien E, Vince G, Redman C (1997) Increased maternal plasma levels of soluble adhesion molecules (ICAM-1, V-CAM-1, E-selectin) in preeclampsia. Eur J Obstet Gynecol Reprod Biol 71:53–58

    Article  PubMed  CAS  Google Scholar 

  45. Clausen T, Djurovic S, Brosstad F, Berg K, Henriksen T (2000) Altered circulating levels of adhesion molecules at 18 week’s gestation among women with eventual preeclampsia: indicators of disturbed placentation in absence of evidence of endothelial dysfunction? Am J Obstet Gynecol 182:321–325

    Article  PubMed  CAS  Google Scholar 

  46. Lok CA, Snijder KS, Nieuwland R, Van Der Post JA, de Vos P, Faas MM (2012) Microparticles of pregnant women and preeclamptic patients activate endothelial cells in the presence of monocytes. Am J Reprod Immunol 67:206–215

    Article  PubMed  CAS  Google Scholar 

  47. Alijotas-Reig J, Palacio-Garcia C, Farran-Codina I, Ruiz-Romance M, Llurba E, Vilardell-Tarres M (2012) Circulating cell-derived microparticles in severe preeclampsia and in fetal growth restriction. Am J Reprod Immunol 67:140–151

    Article  PubMed  CAS  Google Scholar 

  48. Reyna-Villasmil E, Mejia-Montilla J, Reyna-Villasmil N, Torres-Cepeda D, Peña-Paredes E, Santos-Bolívar J et al (2011) Endothelial microparticles in preeclampsia and eclampsia. Med Clin (Barc) 136:522–526

    Article  Google Scholar 

  49. Chen Y, Huang Y, Jiang R, Teng Y (2012) Syncytiotrophoblast-derived microparticle shedding in early-onset and late-onset severe pre-eclampsia. Int J Gynaecol Obstet 119:234–238

    Article  PubMed  Google Scholar 

  50. Walsh SW, Vaughan JE, Wang Y, Roberts LJ (2000) Placental isoprostane is significantly increased in preeclampsia. FASEB J 14:1289–1296

    Article  PubMed  CAS  Google Scholar 

  51. Lok CA, Van Der Post JA, Sargent IL (2008) Changes in Microparticle numbers and cellular origin during pregnancy and preeclampsia. Hypertens Pregnancy 27:344–360

    Article  PubMed  CAS  Google Scholar 

  52. Cockell AP, Learmont JG, Smárason AK, Redman CW, Sargent IL, Poston L (1997) Human placental syncytiotrophoblast microvillous membranes impair maternal vascular endothelial function. Br J Obstet Gynaecol 104:235–240

    Article  PubMed  CAS  Google Scholar 

  53. Redman CW, Sargent IL (2000) Placental debris, oxidative stress and preeclampsia. Placenta 21(7):597–602

    Article  PubMed  CAS  Google Scholar 

  54. Makrides M, Duley L, Oslen SF (2001) Fish oil, and other prostaglandin precursor supplementation during pregnancy for reducing pre-eclampsia, preterm birth, low birth weight and intrauterine growth restriction. Cochrane Database Syst Rev 4:CD003402

    Google Scholar 

  55. McKay DG (1972) Hematologic evidence of disseminated intravascular coagulation in eclampsia. Obstet Gynecol Surv 27:399–417

    Article  PubMed  CAS  Google Scholar 

  56. Raijmakers MTM, Dechend R, Poston L (2004) Oxidative stress and preeclampsia. Rationale for antioxidant clinical trials. Hypertension 44:374–380

    Article  PubMed  CAS  Google Scholar 

  57. Chappell LC, Seed PT, Briley AL, Kelly FJ, Lee R, Hunt BJ et al (1999) Effect of antioxidants on the occurrence of pre-eclampsia in women at increased risk: a randomised trial. Lancet 354:810–816

    PubMed  CAS  Google Scholar 

  58. Sibai BM (1998) Prevention of preeclampsia: a big disappointment. Am J Obstet Gynecol 179:1275–1278

    Article  PubMed  CAS  Google Scholar 

  59. Aagaard-Tillery KM, Belford MA (2005) Eclampsia: morbidity, mortality, and management. Clin Obstet Gynecol 48:12–23

    Article  PubMed  Google Scholar 

  60. Aharon A, Brenner B (2011) Microparticles and pregnancy complications. Thromb Res 127:67–71

    Article  Google Scholar 

  61. Reister F, Frank HG, Kingdom JCP, Heyl W, Kaufmann P, Rath W (2001) Macrophage-induced apoptosis limits endovascular trophoblast invasion in the uterine wall of preeclamptic women. Lab Invest 81:1143–1152

    Article  PubMed  CAS  Google Scholar 

  62. Messerli M, May K, Hansson SR, Schnneider H, Holzgreve W, Hahn S et al (2010) Feto-maternal interactions in pregnancies: placental microparticles activate peripheral blood monocytes. Placenta 31:106–112

    Article  PubMed  CAS  Google Scholar 

  63. Reister F, Frank HG, Heyl W, Kosanke G, Huppertz B, Schroder W (1999) The distribution of macrophages in spiral arteries of the placental bed in pre-eclampsia differs from that in healthy patients. Placenta 20:229–233

    Article  PubMed  CAS  Google Scholar 

  64. Huppertz B, Kadyrov M, Kingdom J (2006) Apoptosis and its role in the trophoblast. Am J Obstet Gynecol 195:29–39

    Article  PubMed  Google Scholar 

  65. Redman CW, Sargent IL (2007) Microparticles and immunomodulation in pregnancy and pre-eclampsia. J Reprod Immunol 76:61–67

    Article  PubMed  CAS  Google Scholar 

  66. Stallmach T, Hebisch G, Orban P, Lu X (1999) Aberrant positioning of trophoblast and lymphocytes in the feto-maternal interface with pre-eclampsia. Virchows Arch 434:207–211

    Article  PubMed  CAS  Google Scholar 

  67. Redman CW, Sacks GP, Sargent IL (1999) Preeclampsia: an excessive maternal inflammatory response to pregnancy. Am J Obstet Gynecol 180:499–506

    Article  PubMed  CAS  Google Scholar 

  68. Mellembakken JR, Aukrust P, Olafsen MK, Ueland T, Hestdal K, Videm V (2002) Activation of leukocytes during the uteroplacental passage in preeclampsia. Hypertension 39:155–160

    Article  PubMed  CAS  Google Scholar 

  69. Luppi P, Deloia JA (2006) Monocytes of preeclamptic women spontaneously synthesize pro-inflammatory cytokines. Clin Immunol 118:268–275

    Article  PubMed  CAS  Google Scholar 

  70. Salomon O, Katz B, Dardik R, Livnat T, Steinberg DM, Achiron R et al (2009) Plasma levels of microparticles at 24 weeks of gestation do not predict subsequent pregnancy complications. Fertil Steril 92:682–687

    Article  PubMed  CAS  Google Scholar 

  71. Marques FK, Campos FM, Filho OA, Carvalho AT, Dusse LM, Gomes KB (2012) Circulating microparticles in severe preeclampsia. Clin Chim Acta 414C:253–258

    Article  Google Scholar 

Download references

Acknowledgments

CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico) and FIOCRUZ (Fundação Oswaldo Cruz) for the financial support. The authors also thank the Program for Technological Development in Tools for Health-PDTIS-FIOCRUZ for use of its facilities. A.T.C. and L.M.S.D. are greatful for CNPq fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karina B. Gomes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marques, F.K., Campos, F.M.F., Sousa, L.P. et al. Association of microparticles and preeclampsia. Mol Biol Rep 40, 4553–4559 (2013). https://doi.org/10.1007/s11033-013-2536-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-013-2536-0

Keywords

Navigation