Skip to main content

Advertisement

Log in

Protein misfolding and dysregulated protein homeostasis in autoinflammatory diseases and beyond

  • Review
  • Published:
Seminars in Immunopathology Aims and scope Submit manuscript

Abstract

Cells have a number of mechanisms to maintain protein homeostasis, including proteasome-mediated degradation of ubiquitinated proteins and autophagy, a regulated process of “self-eating” where the contents of entire organelles can be recycled for other uses. The unfolded protein response prevents protein overload in the secretory pathway. In the past decade, it has become clear that these fundamental cellular processes also help contain inflammation though degrading pro-inflammatory protein complexes such as the NLRP3 inflammasome. Signaling pathways such as the UPR can also be co-opted by toll-like receptor and mitochondrial reactive oxygen species signaling to induce inflammatory responses. Mutations that alter key inflammatory proteins, such as NLRP3 or TNFR1, can overcome normal protein homeostasis mechanisms, resulting in autoinflammatory diseases. Conversely, Mendelian defects in the proteasome cause protein accumulation, which can trigger interferon-dependent autoinflammatory disease. In non-Mendelian inflammatory diseases, polymorphisms in genes affecting the UPR or autophagy pathways can contribute to disease, and in diseases not formerly considered inflammatory such as neurodegenerative conditions and type 2 diabetes, there is increasing evidence that cell intrinsic or environmental alterations in protein homeostasis may contribute to pathogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Hetz C et al (2011) The unfolded protein response: integrating stress signals through the stress sensor IRE1alpha. Physiol Rev 91(4):1219–1243

    CAS  PubMed  Google Scholar 

  2. Wu J, Kaufman RJ (2006) From acute ER stress to physiological roles of the unfolded protein response. Cell Death Differ 13(3):374–384

    CAS  PubMed  Google Scholar 

  3. Urano F et al (2000) Coupling of stress in the ER to activation of JNK protein kinases by transmembrane protein kinase IRE1. Science 287(5453):664–666

    CAS  PubMed  Google Scholar 

  4. Virgin HW, Levine B (2009) Autophagy genes in immunity. Nat Immunol 10(5):461–470

    CAS  PubMed Central  PubMed  Google Scholar 

  5. Levine B, Kroemer G (2008) Autophagy in the pathogenesis of disease. Cell 132(1):27–42

    CAS  PubMed Central  PubMed  Google Scholar 

  6. Park H et al (2012) Lighting the fires within: the cell biology of autoinflammatory diseases. Nat Rev Immunol 12(8):570–580

    CAS  PubMed Central  PubMed  Google Scholar 

  7. McDermott MF et al (1999) Germline mutations in the extracellular domains of the 55 kDa TNF receptor, TNFR1, define a family of dominantly inherited autoinflammatory syndromes. Cell 97(1):133–144

    CAS  PubMed  Google Scholar 

  8. McGonagle DG, McDermott MF (2006) A proposed classification of the immunological diseases. PLoS Med 3(8), e297

    PubMed Central  PubMed  Google Scholar 

  9. Savic S et al (2012) Autoinflammatory syndromes and cellular responses to stress: pathophysiology, diagnosis and new treatment perspectives. Best Pract Res Clin Rheumatol 26(4):505–533

    CAS  PubMed  Google Scholar 

  10. Yao Q, Furst DE (2008) Autoinflammatory diseases: an update of clinical and genetic aspects. Rheumatology (Oxford) 47(7):946–951

    CAS  Google Scholar 

  11. McKusick AV (1986, 2008) Periodic fever, familial, autosomal dominant (OMIM:142680) [Online]. [cited 2015 Feb 07]

  12. Askentijevich I (2014) TNFRSF1A sequence variants [Online]. [cited 2015 Feb 07]. Available from: http://fmf.igh.cnrs.fr/ISSAID/infevers/search.php?n=2

  13. Cantarini L et al (2012) Tumour necrosis factor receptor-associated periodic syndrome (TRAPS): state of the art and future perspectives. Autoimmun Rev 12(1):38–43

    CAS  PubMed  Google Scholar 

  14. Simon A et al (2010) Concerted action of wild-type and mutant TNF receptors enhances inflammation in TNF receptor 1-associated periodic fever syndrome. Proc Natl Acad Sci U S A 107(21):9801–9806

    CAS  PubMed Central  PubMed  Google Scholar 

  15. Xanthoulea S et al (2004) Tumor necrosis factor (TNF) receptor shedding controls thresholds of innate immune activation that balance opposing TNF functions in infectious and inflammatory diseases. J Exp Med 200(3):367–376

    CAS  PubMed Central  PubMed  Google Scholar 

  16. Huggins ML et al (2004) Shedding of mutant tumor necrosis factor receptor superfamily 1A associated with tumor necrosis factor receptor-associated periodic syndrome: differences between cell types. Arthritis Rheum 50(8):2651–2659

    CAS  PubMed  Google Scholar 

  17. Todd I et al (2007) Mutant tumor necrosis factor receptor associated with tumor necrosis factor receptor-associated periodic syndrome is altered antigenically and is retained within patients’ leukocytes. Arthritis Rheum 56(8):2765–2773

    CAS  PubMed  Google Scholar 

  18. Todd I et al (2004) Mutant forms of tumour necrosis factor receptor I that occur in TNF-receptor-associated periodic syndrome retain signalling functions but show abnormal behaviour. Immunology 113(1):65–79

    CAS  PubMed Central  PubMed  Google Scholar 

  19. Rebelo SL et al (2006) Modeling of tumor necrosis factor receptor superfamily 1A mutants associated with tumor necrosis factor receptor-associated periodic syndrome indicates misfolding consistent with abnormal function. Arthritis Rheum 54(8):2674–2687

    CAS  PubMed  Google Scholar 

  20. Lobito AA et al (2006) Abnormal disulfide-linked oligomerization results in ER retention and altered signaling by TNFR1 mutants in TNFR1-associated periodic fever syndrome (TRAPS). Blood 108(4):1320–1327

    CAS  PubMed Central  PubMed  Google Scholar 

  21. Yousaf N et al (2005) Tumor necrosis factor receptor I from patients with tumor necrosis factor receptor-associated periodic syndrome interacts with wild-type tumor necrosis factor receptor I and induces ligand-independent NF-kappaB activation. Arthritis Rheum 52(9):2906–2916

    CAS  PubMed  Google Scholar 

  22. Nedjai B et al (2008) Abnormal tumor necrosis factor receptor I cell surface expression and NF-kappaB activation in tumor necrosis factor receptor-associated periodic syndrome. Arthritis Rheum 58(1):273–283

    CAS  PubMed  Google Scholar 

  23. Dickie LJ et al (2012) Involvement of X-box binding protein 1 and reactive oxygen species pathways in the pathogenesis of tumour necrosis factor receptor-associated periodic syndrome. Ann Rheum Dis 71(12):2035–2043

    CAS  PubMed  Google Scholar 

  24. Martinon F et al (2010) TLR activation of the transcription factor XBP1 regulates innate immune responses in macrophages. Nat Immunol 11(5):411–418

    CAS  PubMed Central  PubMed  Google Scholar 

  25. Bulua AC et al (2011) Mitochondrial reactive oxygen species promote production of proinflammatory cytokines and are elevated in TNFR1-associated periodic syndrome (TRAPS). J Exp Med 208(3):519–533

    CAS  PubMed Central  PubMed  Google Scholar 

  26. Churchman SM et al (2008) A novel TNFRSF1A splice mutation associated with increased nuclear factor kappaB (NF-kappaB) transcription factor activation in patients with tumour necrosis factor receptor associated periodic syndrome (TRAPS). Ann Rheum Dis 67(11):1589–1595

    CAS  PubMed  Google Scholar 

  27. Gattorno M et al (2008) Persistent efficacy of anakinra in patients with tumor necrosis factor receptor-associated periodic syndrome. Arthritis Rheum 58(5):1516–1520

    CAS  PubMed  Google Scholar 

  28. Bachetti T et al (2013) Autophagy contributes to inflammation in patients with TNFR-associated periodic syndrome (TRAPS). Ann Rheum Dis 72(6):1044–1052

    CAS  PubMed  Google Scholar 

  29. Bachetti T, Ceccherini I (2014) Tumor necrosis factor receptor-associated periodic syndrome as a model linking autophagy and inflammation in protein aggregation disease. J Mol Med 92(6):582–594

    Google Scholar 

  30. Moscat J, Diaz-Meco MT (2009) p62 at the crossroads of autophagy, apoptosis, and cancer. Cell 137(6):1001–1004

    CAS  PubMed Central  PubMed  Google Scholar 

  31. van der Burgh R et al (2014) Defects in mitochondrial clearance predispose human monocytes to interleukin-1beta hypersecretion. J Biol Chem 289(8):5000–5012

    PubMed Central  PubMed  Google Scholar 

  32. Agarwal AK et al (2010) PSMB8 encoding the beta5i proteasome subunit is mutated in joint contractures, muscle atrophy, microcytic anemia, and panniculitis-induced lipodystrophy syndrome. Am J Hum Genet 87(6):866–872

    CAS  PubMed Central  PubMed  Google Scholar 

  33. Arima K et al (2011) Proteasome assembly defect due to a proteasome subunit beta type 8 (PSMB8) mutation causes the autoinflammatory disorder, Nakajo-Nishimura syndrome. Proc Natl Acad Sci 108(21852578):14914–14919

    CAS  PubMed Central  PubMed  Google Scholar 

  34. Kitamura A et al (2011) A mutation in the immunoproteasome subunit PSMB8 causes autoinflammation and lipodystrophy in humans. J Clin Invest 121(10):4150–4160

    CAS  PubMed Central  PubMed  Google Scholar 

  35. Liu Y et al (2012) Mutations in proteasome subunit beta type 8 cause chronic atypical neutrophilic dermatosis with lipodystrophy and elevated temperature with evidence of genetic and phenotypic heterogeneity. Arthritis Rheum 64(3):895–907

    CAS  PubMed Central  PubMed  Google Scholar 

  36. Seifert U et al (2010) Immunoproteasomes preserve protein homeostasis upon interferon-induced oxidative stress. Cell 142(4):613–624

    CAS  PubMed  Google Scholar 

  37. Strowig T et al (2012) Inflammasomes in health and disease. Nature 481(7381):278–286

    CAS  PubMed  Google Scholar 

  38. Duncan JA et al (2007) Cryopyrin/NALP3 binds ATP/dATP, is an ATPase, and requires ATP binding to mediate inflammatory signaling. Proc Natl Acad Sci U S A 104(19):8041–8046

    CAS  PubMed Central  PubMed  Google Scholar 

  39. Lu M et al (2014) Uncoupling protein 2 deficiency aggravates astrocytic endoplasmic reticulum stress and nod-like receptor protein 3 inflammasome activation. Neurobiol Aging 35(2):421–430

    CAS  PubMed  Google Scholar 

  40. Chae JJ et al (2011) Gain-of-function Pyrin mutations induce NLRP3 protein-independent interleukin-1beta activation and severe autoinflammation in mice. Immunity 34(5):755–768

    CAS  PubMed Central  PubMed  Google Scholar 

  41. Aksentijevich I et al (2007) The clinical continuum of cryopyrinopathies: novel CIAS1 mutations in North American patients and a new cryopyrin model. Arthritis Rheum 56(4):1273–1285

    CAS  PubMed Central  PubMed  Google Scholar 

  42. Hoffman HM, Wanderer AA, Broide DH (2001) Familial cold autoinflammatory syndrome: phenotype and genotype of an autosomal dominant periodic fever. J Allergy Clin Immunol 108(4):615–620

    CAS  PubMed Central  PubMed  Google Scholar 

  43. Dode C et al (2002) New mutations of CIAS1 that are responsible for Muckle-Wells syndrome and familial cold urticaria: a novel mutation underlies both syndromes. Am J Hum Genet 70(6):1498–1506

    CAS  PubMed Central  PubMed  Google Scholar 

  44. Agostini L et al (2004) NALP3 forms an IL-1beta-processing inflammasome with increased activity in Muckle-Wells autoinflammatory disorder. Immunity 20(3):319–325

    CAS  PubMed  Google Scholar 

  45. Aksentijevich I et al (2002) De novo CIAS1 mutations, cytokine activation, and evidence for genetic heterogeneity in patients with neonatal-onset multisystem inflammatory disease (NOMID): a new member of the expanding family of pyrin-associated autoinflammatory diseases. Arthritis Rheum 46(12):3340–3348

    CAS  PubMed  Google Scholar 

  46. Feldmann J et al (2002) Chronic infantile neurological cutaneous and articular syndrome is caused by mutations in CIAS1, a gene highly expressed in polymorphonuclear cells and chondrocytes. Am J Hum Genet 71(1):198–203

    CAS  PubMed Central  PubMed  Google Scholar 

  47. Harris J et al (2011) Autophagy controls IL-1beta secretion by targeting pro-IL-1beta for degradation. J Biol Chem 286(11):9587–9597

    CAS  PubMed Central  PubMed  Google Scholar 

  48. Nakahira K et al (2011) Autophagy proteins regulate innate immune responses by inhibiting the release of mitochondrial DNA mediated by the NALP3 inflammasome. Nat Immunol 12(3):222–230

    CAS  PubMed Central  PubMed  Google Scholar 

  49. Shi CS et al (2012) Activation of autophagy by inflammatory signals limits IL-1beta production by targeting ubiquitinated inflammasomes for destruction. Nat Immunol 13(3):255–263

    CAS  PubMed Central  PubMed  Google Scholar 

  50. Goldbach-Mansky R et al (2006) Neonatal-onset multisystem inflammatory disease responsive to interleukin-1beta inhibition. N Engl J Med 355(6):581–592

    CAS  PubMed Central  PubMed  Google Scholar 

  51. Hawkins PN, Lachmann HJ, McDermott MF (2003) Interleukin-1-receptor antagonist in the Muckle-Wells syndrome. N Engl J Med 348(25):2583–2584

    PubMed  Google Scholar 

  52. Canna SW et al (2014) An activating NLRC4 inflammasome mutation causes autoinflammation with recurrent macrophage activation syndrome. Nat Genet 46(10):1140–1146

    CAS  PubMed Central  PubMed  Google Scholar 

  53. Romberg N et al (2014) Mutation of NLRC4 causes a syndrome of enterocolitis and autoinflammation. Nat Genet 46(10):1135–1139

    CAS  PubMed Central  PubMed  Google Scholar 

  54. Mear JP et al (1999) Misfolding of HLA-B27 as a result of its B pocket suggests a novel mechanism for its role in susceptibility to spondyloarthropathies. J Immunol 163(12):6665–6670

    CAS  PubMed  Google Scholar 

  55. Dangoria NS et al (2002) HLA-B27 misfolding is associated with aberrant intermolecular disulfide bond formation (dimerization) in the endoplasmic reticulum. J Biol Chem 277(26):23459–23468

    CAS  PubMed  Google Scholar 

  56. Turner MJ et al (2007) HLA–B27 up-regulation causes accumulation of misfolded heavy chains and correlates with the magnitude of the unfolded protein response in transgenic rats: implications for the pathogenesis of spondylarthritis-like disease. Arthritis Rheum 56(1):215–223

    PubMed  Google Scholar 

  57. Turner MJ et al (2005) HLA-B27 misfolding in transgenic rats is associated with activation of the unfolded protein response. J Immunol 175(4):2438–2448

    CAS  PubMed  Google Scholar 

  58. Ciccia F et al (2014) Evidence that autophagy, but not the unfolded protein response, regulates the expression of IL-23 in the gut of patients with ankylosing spondylitis and subclinical gut inflammation. Ann Rheum Dis 73(8):1566–1574

    CAS  PubMed  Google Scholar 

  59. DeLay ML et al (2009) HLA-B27 misfolding and the unfolded protein response augment interleukin-23 production and are associated with Th17 activation in transgenic rats. Arthritis Rheum 60(9):2633–2643

    CAS  PubMed Central  PubMed  Google Scholar 

  60. Neerinckx B, Carter S, Lories RJ (2014) No evidence for a critical role of the unfolded protein response in synovium and blood of patients with ankylosing spondylitis. Ann Rheum Dis 73(3):629–630

    PubMed  Google Scholar 

  61. Sherlock JP et al (2012) IL-23 induces spondyloarthropathy by acting on ROR-gammat+ CD3+CD4−CD8− entheseal resident T cells. Nat Med 18(7):1069–1076

    CAS  PubMed  Google Scholar 

  62. Rioux JD et al (2007) Genome-wide association study identifies new susceptibility loci for Crohn’s disease and implicates autophagy in disease pathogenesis. Nat Genet 39(5):596–604

    CAS  PubMed Central  PubMed  Google Scholar 

  63. Saitoh T et al (2008) Loss of the autophagy protein Atg16L1 enhances endotoxin-induced IL-1[bgr] production. Nature 456(7219):264–268

    CAS  PubMed  Google Scholar 

  64. Cadwell K et al (2008) A key role for autophagy and the autophagy gene Atg16l1 in mouse and human intestinal Paneth cells. Nature 456(7219):259–263

    CAS  PubMed Central  PubMed  Google Scholar 

  65. Kaser A et al (2008) XBP1 links ER stress to intestinal inflammation and confers genetic risk for human inflammatory bowel disease. Cell 134(5):743–756

    CAS  PubMed Central  PubMed  Google Scholar 

  66. Shi Y, Evans JE, Rock KL (2003) Molecular identification of a danger signal that alerts the immune system to dying cells. Nature 425(6957):516–521

    CAS  PubMed  Google Scholar 

  67. Scott P et al (2006) Engagement of CD14 mediates the inflammatory potential of monosodium urate crystals. J Immunol 177(9):6370–6378

    CAS  PubMed  Google Scholar 

  68. Martinon F et al (2006) Gout-associated uric acid crystals activated the NALP3 inflammasome. Nature 440(9):237

    CAS  PubMed  Google Scholar 

  69. Di Giovine FS et al (1987) Interleukin 1 (IL 1) as a mediator of crystal arthritis. Stimulation of T cell and synovial fibroblast mitogenesis by urate crystal-induced IL 1. J Immunol 138(10):3213–3218

    PubMed  Google Scholar 

  70. di Giovine FS et al (1991) Urate crystals stimulate production of tumor necrosis factor alpha from human blood monocytes and synovial cells. Cytokine mRNA and protein kinetics, and cellular distribution. J Clin Invest 87(4):1375–1381

    PubMed Central  PubMed  Google Scholar 

  71. Choe JY et al (2014) Enhanced p62 expression through impaired proteasomal degradation is involved in caspase-1 activation in monosodium urate crystal-induced interleukin-1b expression. Rheumatology (Oxford) 53(6):1043–1053

    CAS  Google Scholar 

  72. Allaeys I, Marceau F, Poubelle PE (2013) NLRP3 promotes autophagy of urate crystals phagocytized by human osteoblasts. Arthritis Res Ther 15(6):R176

    PubMed Central  PubMed  Google Scholar 

  73. Mitroulis I et al (2011) Neutrophil extracellular trap formation is associated with IL-1beta and autophagy-related signaling in gout. PLoS One 6(12), e29318

    CAS  PubMed Central  PubMed  Google Scholar 

  74. Savic S et al (2014) TLR dependent XBP-1 activation induces an autocrine loop in rheumatoid arthritis synoviocytes(). J Autoimmun 50(100):59–66

    CAS  PubMed Central  PubMed  Google Scholar 

  75. Qiu Q et al (2013) Toll-like receptor-mediated IRE1alpha activation as a therapeutic target for inflammatory arthritis. EMBO J 32(18):2477–2490

    CAS  PubMed Central  PubMed  Google Scholar 

  76. Shi B et al (2012) SNAPIN: an endogenous toll-like receptor ligand in rheumatoid arthritis. Ann Rheum Dis 71(8):1411–1417

    CAS  PubMed  Google Scholar 

  77. Hirosumi J et al (2002) A central role for JNK in obesity and insulin resistance. Nature 420(6913):333–336

    CAS  PubMed  Google Scholar 

  78. Ozcan U et al (2004) Endoplasmic reticulum stress links obesity, insulin action, and type 2 diabetes. Science 306(5695):457–461

    PubMed  Google Scholar 

  79. Ozcan U et al (2006) Chemical chaperones reduce ER stress and restore glucose homeostasis in a mouse model of type 2 diabetes. Science 313(5790):1137–1140

    PubMed  Google Scholar 

  80. Samuel VT, Shulman GI (2012) Integrating mechanisms for insulin resistance: common threads and missing links. Cell 148(5):852–871

    CAS  PubMed Central  PubMed  Google Scholar 

  81. Wang B, Wood IS, Trayhurn P (2007) Dysregulation of the expression and secretion of inflammation-related adipokines by hypoxia in human adipocytes. Pflugers Arch - Eur J Physiol 455(3):479–492

    CAS  Google Scholar 

  82. Boden G et al (2008) Increase in endoplasmic reticulum stress-related proteins and genes in adipose tissue of obese, insulin-resistant individuals. Diabetes 57(9):2438–2444

    CAS  PubMed Central  PubMed  Google Scholar 

  83. Sharma NK et al (2008) Endoplasmic reticulum stress markers are associated with obesity in nondiabetic subjects. J Clin Endocrinol Metab 93(11):4532–4541

    CAS  PubMed Central  PubMed  Google Scholar 

  84. Gregor MF et al (2009) Endoplasmic reticulum stress is reduced in tissues of obese subjects after weight loss. Diabetes 58(3):693–700

    CAS  PubMed Central  PubMed  Google Scholar 

  85. Brook CG, Lloyd JK, Wolf OH (1972) Relation between age of onset of obesity and size and number of adipose cells. Br Med J 2(5804):25–27

    CAS  PubMed Central  PubMed  Google Scholar 

  86. Koumenis C et al (2002) Regulation of protein synthesis by hypoxia via activation of the endoplasmic reticulum kinase PERK and phosphorylation of the translation initiation factor eIF2alpha. Mol Cell Biol 22(21):7405–7416

    CAS  PubMed Central  PubMed  Google Scholar 

  87. Hosogai N et al (2007) Adipose tissue hypoxia in obesity and its impact on adipocytokine dysregulation. Diabetes 56(4):901–911

    CAS  PubMed  Google Scholar 

  88. Uysal KT et al (1997) Protection from obesity-induced insulin resistance in mice lacking TNF-[alpha] function. Nature 389(6651):610–614

    CAS  PubMed  Google Scholar 

  89. Serrano-Marco L et al (2012) TNF-a inhibits PPAR beta/delta activity and SIRT1 expression through NF-kB in human adipocytes. Biochim Biophys Acta (BBA) Mol Cell Biol Lipids 1821(9):1177–1185

    CAS  Google Scholar 

  90. Salvado L et al (2014) PPARbeta/delta prevents endoplasmic reticulum stress-associated inflammation and insulin resistance in skeletal muscle cells through an AMPK-dependent mechanism. Diabetologia 57(10):2126–2135

    CAS  PubMed  Google Scholar 

  91. Yoshizaki T et al (2009) SIRT1 exerts anti-inflammatory effects and improves insulin sensitivity in adipocytes. Mol Cell Biol 29(5):1363–1374

    CAS  PubMed Central  PubMed  Google Scholar 

  92. Yoshizaki T et al (2010) SIRT1 inhibits inflammatory pathways in macrophages and modulates insulin sensitivity. Am J Physiol Endocrinol Metab 298(3):E419–E428

    CAS  PubMed Central  PubMed  Google Scholar 

  93. Masters SL et al (2010) Activation of the NLRP3 inflammasome by islet amyloid polypeptide provides a mechanism for enhanced IL-1beta in type 2 diabetes. Nat Immunol 11(10):897–904

    CAS  PubMed Central  PubMed  Google Scholar 

  94. Matveyenko AV, Butler PC (2006) Islet amyloid polypeptide (IAPP) transgenic rodents as models for type 2 diabetes. ILAR J 47(3):225–233

    CAS  PubMed  Google Scholar 

  95. Ehses JA et al (2009) IL-1 antagonism reduces hyperglycemia and tissue inflammation in the type 2 diabetic GK rat. Proc Natl Acad Sci U S A 106(33):13998–14003

    CAS  PubMed Central  PubMed  Google Scholar 

  96. Larsen CM et al (2009) Sustained effects of interleukin-1 receptor antagonist treatment in type 2 diabetes. Diabetes Care 32(9):1663–1668

    CAS  PubMed Central  PubMed  Google Scholar 

  97. Polymeropoulos MH et al (1997) Mutation in the alpha-synuclein gene identified in families with Parkinson’s disease. Science 276(5321):2045–2047

    CAS  PubMed  Google Scholar 

  98. Chartier-Harlin MC et al (2004) Alpha-synuclein locus duplication as a cause of familial Parkinson’s disease. Lancet 364(9440):1167–1169

    CAS  PubMed  Google Scholar 

  99. Singleton AB et al (2003) Alpha-Synuclein locus triplication causes Parkinson’s disease. Science 302(5646):841

    CAS  PubMed  Google Scholar 

  100. McNaught KS et al (2004) Systemic exposure to proteasome inhibitors causes a progressive model of Parkinson’s disease. Ann Neurol 56(1):149–162

    CAS  PubMed  Google Scholar 

  101. McNaught KS et al (2003) Altered proteasomal function in sporadic Parkinson’s disease. Exp Neurol 179(1):38–46

    CAS  PubMed  Google Scholar 

  102. Snyder H et al (2003) Aggregated and monomeric alpha-synuclein bind to the S6′ proteasomal protein and inhibit proteasomal function. J Biol Chem 278(14):11753–11759

    CAS  PubMed  Google Scholar 

  103. Webb JL et al (2003) Alpha-Synuclein is degraded by both autophagy and the proteasome. J Biol Chem 278(27):25009–25013

    CAS  PubMed  Google Scholar 

  104. Pintado C et al (2012) Lipopolysaccharide-induced neuroinflammation leads to the accumulation of ubiquitinated proteins and increases susceptibility to neurodegeneration induced by proteasome inhibition in rat hippocampus. J Neuroinflammation 9(1):87

    CAS  PubMed Central  PubMed  Google Scholar 

  105. Spillantini MG et al (1997) Alpha-synuclein in Lewy bodies. Nature 388(6645):839–840

    CAS  PubMed  Google Scholar 

  106. Spillantini MG et al (1998) Alpha-Synuclein in filamentous inclusions of Lewy bodies from Parkinson’s disease and dementia with Lewy bodies. Proc Natl Acad Sci U S A 95(11):6469–6473

    CAS  PubMed Central  PubMed  Google Scholar 

  107. Chung KK et al (2001) Parkin ubiquitinates the alpha-synuclein-interacting protein, synphilin-1: implications for Lewy-body formation in Parkinson disease. Nat Med 7(10):1144–1150

    CAS  PubMed  Google Scholar 

  108. Gorbatyuk MS et al (2012) Glucose regulated protein 78 diminishes alpha-synuclein neurotoxicity in a rat model of Parkinson disease. Mol Ther 20(7):1327–1337

    CAS  PubMed Central  PubMed  Google Scholar 

  109. Komatsu M et al (2006) Loss of autophagy in the central nervous system causes neurodegeneration in mice. Nature 441(7095):880–884

    CAS  PubMed  Google Scholar 

  110. Hara T et al (2006) Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice. Nature 441(7095):885–889

    CAS  PubMed  Google Scholar 

  111. Martinez-Vicente M et al (2008) Dopamine-modified alpha-synuclein blocks chaperone-mediated autophagy. J Clin Invest 118(2):777–788

    CAS  PubMed Central  PubMed  Google Scholar 

  112. Cuervo AM et al (2004) Impaired degradation of mutant alpha-synuclein by chaperone-mediated autophagy. Science 305(5688):1292–1295

    CAS  PubMed  Google Scholar 

  113. Winslow AR et al (2010) Alpha-Synuclein impairs macroautophagy: implications for Parkinson’s disease. J Cell Biol 190(6):1023–1037

    CAS  PubMed Central  PubMed  Google Scholar 

  114. Narendra D et al (2008) Parkin is recruited selectively to impaired mitochondria and promotes their autophagy. J Cell Biol 183(5):795–803

    CAS  PubMed Central  PubMed  Google Scholar 

  115. Yu J et al (2014) Inflammasome activation leads to Caspase-1-dependent mitochondrial damage and block of mitophagy. Proc Natl Acad Sci U S A 111(43):15514–15519

    CAS  PubMed Central  PubMed  Google Scholar 

  116. McGeer PL et al (1988) Reactive microglia are positive for HLA-DR in the substantia nigra of Parkinson’s and Alzheimer’s disease brains. Neurology 38(8):1285–1291

    CAS  PubMed  Google Scholar 

  117. Gao HM et al (2008) Neuroinflammation and oxidation/nitration of alpha-synuclein linked to dopaminergic neurodegeneration. J Neurosci 28(30):7687–7698

    CAS  PubMed Central  PubMed  Google Scholar 

  118. Mogi M et al (1994) Interleukin-1 beta, interleukin-6, epidermal growth factor and transforming growth factor-alpha are elevated in the brain from parkinsonian patients. Neurosci Lett 180(2):147–150

    CAS  PubMed  Google Scholar 

  119. Mogi M et al (1994) Tumor necrosis factor-alpha (TNF-alpha) increases both in the brain and in the cerebrospinal fluid from parkinsonian patients. Neurosci Lett 165(1-2):208–210

    CAS  PubMed  Google Scholar 

  120. Gao HM et al (2002) Microglial activation-mediated delayed and progressive degeneration of rat nigral dopaminergic neurons: relevance to Parkinson’s disease. J Neurochem 81(6):1285–1297

    CAS  PubMed  Google Scholar 

  121. Qin L et al (2007) Systemic LPS causes chronic neuroinflammation and progressive neurodegeneration. Glia 55(5):453–462

    PubMed Central  PubMed  Google Scholar 

  122. Pan W, Kastin AJ (2002) TNFalpha transport across the blood-brain barrier is abolished in receptor knockout mice. Exp Neurol 174(2):193–200

    CAS  PubMed  Google Scholar 

  123. Hetier E et al (1991) Modulation of interleukin-1 and tumor necrosis factor expression by beta-adrenergic agonists in mouse ameboid microglial cells. Exp Brain Res 86(2):407–413

    CAS  PubMed  Google Scholar 

  124. Pott Godoy MC et al (2008) Central and systemic IL-1 exacerbates neurodegeneration and motor symptoms in a model of Parkinson’s disease. Brain 131(Pt 7):1880–1894

    PubMed  Google Scholar 

  125. Ferrari CC et al (2006) Progressive neurodegeneration and motor disabilities induced by chronic expression of IL-1beta in the substantia nigra. Neurobiol Dis 24(1):183–193

    CAS  PubMed  Google Scholar 

  126. Meyer-Luehmann M et al (2008) Rapid appearance and local toxicity of amyloid-β plaques in a mouse model of Alzheimer’s disease. Nature 451(7179):720–724

    CAS  PubMed Central  PubMed  Google Scholar 

  127. Hoozemans JJ et al (2005) The unfolded protein response is activated in Alzheimer’s disease. Acta Neuropathol 110(2):165–172

    CAS  PubMed  Google Scholar 

  128. Hoozemans JJ et al (2009) The unfolded protein response is activated in pretangle neurons in Alzheimer’s disease hippocampus. Am J Pathol 174(4):1241–1251

    CAS  PubMed Central  PubMed  Google Scholar 

  129. Chang RC et al (2002) Phosphorylation of eukaryotic initiation factor-2alpha (eIF2alpha) is associated with neuronal degeneration in Alzheimer’s disease. Neuroreport 13(18):2429–2432

    CAS  PubMed  Google Scholar 

  130. Halle A et al (2008) The NALP3 inflammasome is involved in the innate immune response to amyloid-[beta]. Nat Immunol 9(8):857–865

    CAS  PubMed Central  PubMed  Google Scholar 

  131. Ittner LM, Götz J (2011) Amyloid-β and tau—a toxic pas de deux in Alzheimer’s disease. Nat Rev Neurosci 12(2):67–72

    Google Scholar 

  132. Masters SL, O’Neill LAJ (2011) Disease-associated amyloid and misfolded protein aggregates activate the inflammasome. Trends Mol Med 17(5):276–282

    CAS  PubMed  Google Scholar 

  133. Simard AR et al (2006) Bone marrow-derived microglia play a critical role in restricting senile plaque formation in Alzheimer’s disease. Neuron 49(4):489–502

    CAS  PubMed  Google Scholar 

  134. Itagaki S et al (1989) Relationship of microglia and astrocytes to amyloid deposits of Alzheimer disease. J Neuroimmunol 24(3):173–182

    CAS  PubMed  Google Scholar 

  135. Blum-Degen D et al (1995) Interleukin-1 beta and interleukin-6 are elevated in the cerebrospinal fluid of Alzheimer’s and de novo Parkinson’s disease patients. Neurosci Lett 202(1-2):17–20

    CAS  PubMed  Google Scholar 

  136. Pickford F et al (2008) The autophagy-related protein beclin 1 shows reduced expression in early Alzheimer disease and regulates amyloid beta accumulation in mice. J Clin Invest 118(6):2190–2199

    CAS  PubMed Central  PubMed  Google Scholar 

  137. Jager RD, Mieler WF, Miller JW (2008) Age-related macular degeneration. N Engl J Med 358(24):2606–2617

    CAS  PubMed  Google Scholar 

  138. Gao H, Hollyfield JG (1992) Aging of the human retina: differential loss of neurons and retinal pigment epithelial cells. Invest Ophthalmol Vis Sci 33(1):1–17

    CAS  PubMed  Google Scholar 

  139. Friedman DS et al (1999) Racial differences in the prevalence of age-related macular degeneration. Ophthalmology 106(6):1049–1055

    CAS  PubMed  Google Scholar 

  140. Vingerling JR et al (1995) The prevalence of age-related maculopathy in the Rotterdam Study. Ophthalmology 102(2):205–210

    CAS  PubMed  Google Scholar 

  141. The Eye Diseases Prevalence Research, G (2004) Prevalence of age-related macular degeneration in the United States. Arch Ophthalmol 122(4):564–572

    Google Scholar 

  142. Anderson DH et al (2004) Characterization of β amyloid assemblies in drusen: the deposits associated with aging and age-related macular degeneration. Exp Eye Res 78(2):243–256

    CAS  PubMed  Google Scholar 

  143. Ethen CM et al (2007) Transformation of the proteasome with age-related macular degeneration. FEBS Lett 581(5):885–890

    CAS  PubMed Central  PubMed  Google Scholar 

  144. Johnson LV et al (2001) Complement activation and inflammatory processes in drusen formation and age related macular degeneration. Exp Eye Res 73(6):887–896

    CAS  PubMed  Google Scholar 

  145. Kang M-J, Ryoo HD (2009) Suppression of retinal degeneration in Drosophila by stimulation of ER-associated degradation. Proc Natl Acad Sci 106(40):17043–17048

    CAS  PubMed Central  PubMed  Google Scholar 

  146. Kroeger H et al (2012) Induction of endoplasmic reticulum stress genes, BiP and Chop, in genetic and environmental models of retinal degeneration. Invest Ophthalmol Vis Sci 53(12):7590–7599

    CAS  PubMed Central  PubMed  Google Scholar 

  147. Mendes CS et al (2009) ER stress protects from retinal degeneration. EMBO J 28(9):1296–1307

    CAS  PubMed Central  PubMed  Google Scholar 

  148. Ramos de Carvalho JE et al (2013) Complement factor C3a alters proteasome function in human RPE cells and in an animal model of age-related RPE degeneration. Invest Ophthalmol Vis Sci 54(10):6489–6501

    CAS  PubMed  Google Scholar 

  149. Ryoo HD et al (2006) Unfolded protein response in a Drosophila model for retinal degeneration. EMBO J 26(1):242–252

    PubMed Central  PubMed  Google Scholar 

  150. Shimazawa M et al (2007) Involvement of ER stress in retinal cell death. Mol Vis 13:578–587

    CAS  PubMed Central  PubMed  Google Scholar 

  151. Yang L-p et al (2008) Endoplasmic reticulum stress is activated in light-induced retinal degeneration. J Neurosci Res 86(4):910–919

    CAS  PubMed  Google Scholar 

  152. Zhang X et al (2008) The proteasome: a target of oxidative damage in cultured human retina pigment epithelial cells. Invest Ophthalmol Vis Sci 49(8):3622–3630

    PubMed Central  PubMed  Google Scholar 

  153. Ryhänen T et al (2009) Crosstalk between Hsp70 molecular chaperone, lysosomes and proteasomes in autophagy-mediated proteolysis in human retinal pigment epithelial cells. J Cell Mol Med 13(9b):3616–3631

    PubMed  Google Scholar 

  154. Zhong Y et al (2012) X-Box binding protein 1 is essential for the anti-oxidant defense and cell survival in the retinal pigment epithelium. PLoS One 7(6), e38616

    CAS  PubMed Central  PubMed  Google Scholar 

  155. Crabb JW et al (2002) Drusen proteome analysis: an approach to the etiology of age-related macular degeneration. Proc Natl Acad Sci 99(23):14682–14687

    CAS  PubMed Central  PubMed  Google Scholar 

  156. Doyle SL et al (2012) NLRP3 has a protective role in age-related macular degeneration through the induction of IL-18 by drusen components. Nat Med 18(5):791–798

    CAS  PubMed Central  PubMed  Google Scholar 

  157. Wang ZV et al (2014) Spliced X-box binding protein 1 couples the unfolded protein response to hexosamine biosynthetic pathway. Cell 156(6):1179–1192

    CAS  PubMed Central  PubMed  Google Scholar 

  158. Chouchani ET et al (2014) Ischaemic accumulation of succinate controls reperfusion injury through mitochondrial ROS. Nature 515(7527):431–435

    CAS  PubMed Central  PubMed  Google Scholar 

  159. Mimura N et al (2012) Blockade of XBP1 splicing by inhibition of IRE1alpha is a promising therapeutic option in multiple myeloma. Blood 119(24):5772–5781

    CAS  PubMed Central  PubMed  Google Scholar 

  160. Coll RC et al (2015) A small-molecule inhibitor of the NLRP3 inflammasome for the treatment of inflammatory diseases. Nat Med 21:248–255

    CAS  PubMed  Google Scholar 

  161. Youm Y-H et al (2015) The ketone metabolite [beta]-hydroxybutyrate blocks NLRP3 inflammasome-mediated inflammatory disease. Nat Med 21:263–269

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Leeds Teaching Hospitals Special Trustees (9/R01/2002), Arthritis Research UK (grant 19269) and the NIHR-Leeds Musculoskeletal Biomedical Research Unit who funded McD and the Wolfson Foundation who funded an intercalated degree research scholarship for SH. RMS and AA are supported by the NIAMS intramural research program, and AA is an NIH UGSP scholar.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Richard M. Siegel or Michael F. McDermott.

Additional information

This article is a contribution to the Special Issue on The Inflammasome and Autoinflammatory Diseases - Guest Editors: Seth L. Masters, Tilmann Kallinich and Seza Ozen

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Agyemang, A.F., Harrison, S.R., Siegel, R.M. et al. Protein misfolding and dysregulated protein homeostasis in autoinflammatory diseases and beyond. Semin Immunopathol 37, 335–347 (2015). https://doi.org/10.1007/s00281-015-0496-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00281-015-0496-2

Keywords

Navigation